Index
This page lists the core methods and types of the ClusterValidityIndices.jl
package. The Modules section lists the modules exported by the package including the ClusterValidityIndices
module itself. The Methods section lists the public methods for the package that use the CVIs/ICVIs in Types. Each of these entries link to the docstrings in the Docs section.
Index
This section enumerates the names exported by the package, each of which links to its corresponding Documentation.
Modules
Functions
Types
ClusterValidityIndices.CH
ClusterValidityIndices.CH
ClusterValidityIndices.CVI
ClusterValidityIndices.DB
ClusterValidityIndices.DB
ClusterValidityIndices.GD43
ClusterValidityIndices.GD43
ClusterValidityIndices.GD53
ClusterValidityIndices.GD53
ClusterValidityIndices.PS
ClusterValidityIndices.PS
ClusterValidityIndices.WB
ClusterValidityIndices.WB
ClusterValidityIndices.XB
ClusterValidityIndices.XB
ClusterValidityIndices.cSIL
ClusterValidityIndices.cSIL
ClusterValidityIndices.rCIP
ClusterValidityIndices.rCIP
Constants
Docs
This section lists the documentation for every exported name of the ClusterValidityIndices.jl
package.
Modules
ClusterValidityIndices.ClusterValidityIndices
— ModuleMain module for ClusterValidityIndices.jl
, a Julia package of metrics for unsupervised learning.
This module exports all of the CVI modules, options, and utilities used by the ClusterValidityIndices.jl
package. For full usage, see the official guide at https://ap6yc.github.io/ClusterValidityIndices.jl/dev/man/guide/.
Basic Usage
Install and import the package in a script with
using Pkg
Pkg.add("ClusterValidityIndices")
using ClusterValidityIndices
then create a CVI object with an empty argument constructor
my_cvi = DB()
and get the criterion values with get_cvi!
(batch) or get_icvi!
(incremental)
# Load some features and labels from a clustering process
features, labels = get_some_clustering_data()
# Batch criterion value
criterion_value = get_cvi!(my_cvi, features, labels)
# Incremental criterion values
criterion_values = zeros(length(labels))
for ix in eachindex(labels)
criterion_values[ix] = get_icvi!(my_cvi, features[:, ix], labels[ix])
end
Imports
The following names are imported by the package as dependencies:
Base
Core
DocStringExtensions
ElasticArrays
LinearAlgebra
NumericalTypeAliases
Pkg
Exports
The following names are exported and available when using
the package:
Functions
ClusterValidityIndices.get_cvi!
— Methodget_cvi!(
cvi::CVI,
data::AbstractMatrix{T} where T<:Real,
labels::AbstractVector{T} where T<:Integer
) -> Any
Summary
Compute and return the criterion value in batch mode.
This method takes the CVI object, a batch of samples as a matrix of floats, and a vector of integers that represent the labels prescribed to the data by your clustering algorithm.
You cannot switch to incremental mode after evaluating a CVI in batch mode. To evaluate incrementally, you much create a new CVI object.
Arguments
cvi::CVI
: the stateful information of the CVI providing the criterion value.data::RealMatrix
: a matrix of data, columns as samples and rows as features, used in the external clustering process.labels::IntegerVector
: a vector of integers representing labels prescribed to thedata
by the external clustering algorithm.
Examples
# Create a new CVI object
my_cvi = CH()
# Load in random data as an example; 10 samples with feature dimenison 3
dim = 3
n_samples = 10
data = rand(dim, n_samples)
labels = repeat(1:2, inner=n_samples)
# Compute the final criterion value in batch mode
criterion_value = get_cvi!(cvi, data, labels)
Method List / Definition Locations
get_cvi!(cvi, data, labels)
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/common.jl:432
.
ClusterValidityIndices.get_cvi!
— Methodget_cvi!(
cvi::CVI,
sample::AbstractVector{T} where T<:Real,
label::Integer
) -> Any
Summary
Compute and return the criterion value incrementally.
This method takes the CVI object, a single sample as a vector of floats, and a single integer that represents the label prescribed to the sample by your clustering algorithm.
You cannot switch to batch mode after incrementally evaluating a CVI. To evaluate in batch, you much create a new CVI object.
Arguments
cvi::CVI
: the stateful information of the ICVI providing the criterion value.sample::RealVector
: a vector of features used in clustering the sample.label::Integer
: the cluster label prescribed to the sample by the clustering algorithm.
Examples
# Create a new CVI object
my_cvi = CH()
# Load in random data as an example; 10 samples with feature dimenison 3
dim = 3
n_samples = 10
data = rand(dim, n_samples)
labels = repeat(1:2, inner=n_samples)
# Iteratively compute and extract the criterion value at every step
criterion_values = zeros(n_samples)
for ix = 1:n_samples
sample = data[:, ix]
label = labels[ix]
criterion_values[ix] = get_icvi!(my_cvi, sample, label)
end
Method List / Definition Locations
get_cvi!(cvi, sample, label)
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/common.jl:392
.
Types
ClusterValidityIndices.CH
— Typemutable struct CH <: CVI
Summary
The stateful information of the Calinski-Harabasz (CH) Cluster Validity Index
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- T. Calinski and J. Harabasz, "A dendrite method for cluster analysis," Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.CH
— MethodCH() -> CH
Summary
Constructor for the Calinski-Harabasz (CH) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a CH module
my_cvi = CH()
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- T. Calinski and J. Harabasz, "A dendrite method for cluster analysis," Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Method List / Definition Locations
CH()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/CH.jl:64
.
ClusterValidityIndices.CVI
— Typeabstract type CVI
Summary
Abstract supertype for all CVI objects. All index instantiations are subtypes of CVI
.
Fields
ClusterValidityIndices.DB
— Typemutable struct DB <: CVI
Summary
The stateful information of the Davies-Bouldin (DB) Cluster Validity Index.
References
- D. L. Davies and D. W. Bouldin, "A cluster separation measure," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 224-227, Feb. 1979.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
D::Matrix{Float64}
S::Vector{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.DB
— MethodDB() -> DB
Summary
Constructor for the Davies-Bouldin (DB) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a DB module
my_cvi = DB()
References
- D. L. Davies and D. W. Bouldin, "A cluster separation measure," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 224-227, Feb. 1979.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Method List / Definition Locations
DB()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/DB.jl:63
.
ClusterValidityIndices.GD43
— Typemutable struct GD43 <: CVI
Summary
The stateful information of the Generalized Dunn's Index 43 (GD43) Cluster Validity Index.
References
- A. Ibrahim, J. M. Keller, and J. C. Bezdek, "Evaluating Evolving Structure in Streaming Data With Modified Dunn's Indices," IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1-12, 2019.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
- J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3 , pp. 32-57, 1973.
- J. C. Bezdek and N. R. Pal, "Some new indexes of cluster validity," IEEE Trans. Syst., Man, and Cybern., vol. 28, no. 3, pp. 301-315, Jun. 1998.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
D::Matrix{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.GD43
— MethodGD43() -> GD43
Summary
Constructor for the Generalized Dunn's Index 43 (GD43) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a GD43 module
my_cvi = GD43()
References
- A. Ibrahim, J. M. Keller, and J. C. Bezdek, "Evaluating Evolving Structure in Streaming Data With Modified Dunn's Indices," IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1-12, 2019.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
- J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3 , pp. 32-57, 1973.
- J. C. Bezdek and N. R. Pal, "Some new indexes of cluster validity," IEEE Trans. Syst., Man, and Cybern., vol. 28, no. 3, pp. 301-315, Jun. 1998.
Method List / Definition Locations
GD43()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/GD43.jl:68
.
ClusterValidityIndices.GD53
— Typemutable struct GD53 <: CVI
Summary
The stateful information of the Generalized Dunn's Index 53 (GD53) Cluster Validity Index.
References
- A. Ibrahim, J. M. Keller, and J. C. Bezdek, "Evaluating Evolving Structure in Streaming Data With Modified Dunn's Indices," IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1-12, 2019.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
- J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3 , pp. 32-57, 1973.
- J. C. Bezdek and N. R. Pal, "Some new indexes of cluster validity," IEEE Trans. Syst., Man, and Cybern., vol. 28, no. 3, pp. 301-315, Jun. 1998.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
D::Matrix{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.GD53
— MethodGD53() -> GD53
Summary
Constructor for the Generalized Dunn's Index 53 (GD53) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a GD53 module
my_cvi = GD53()
References
- A. Ibrahim, J. M. Keller, and J. C. Bezdek, "Evaluating Evolving Structure in Streaming Data With Modified Dunn's Indices," IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1-12, 2019.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
- J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3 , pp. 32-57, 1973.
- J. C. Bezdek and N. R. Pal, "Some new indexes of cluster validity," IEEE Trans. Syst., Man, and Cybern., vol. 28, no. 3, pp. 301-315, Jun. 1998.
Method List / Definition Locations
GD53()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/GD53.jl:68
.
ClusterValidityIndices.PS
— Typemutable struct PS <: CVI
Summary
The stateful information of the Partition Separation (PS) Cluster Validity Index.
References
- Miin-Shen Yang and Kuo-Lung Wu, "A new validity index for fuzzy clustering," 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), Melbourne, Victoria, Australia, 2001, pp. 89-92, vol.1.
- E. Lughofer, "Extensions of vector quantization for incremental clustering," Pattern Recognit., vol. 41, no. 3, pp. 995-1011, 2008.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
params::ClusterValidityIndices.CVIElasticParams
D::Matrix{Float64}
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.PS
— MethodPS() -> PS
Summary
Constructor for the Partition Separation (PS) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a PS module
my_cvi = PS()
References
- Miin-Shen Yang and Kuo-Lung Wu, "A new validity index for fuzzy clustering," 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), Melbourne, Victoria, Australia, 2001, pp. 89-92, vol.1.
- E. Lughofer, "Extensions of vector quantization for incremental clustering," Pattern Recognit., vol. 41, no. 3, pp. 995-1011, 2008.
Method List / Definition Locations
PS()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/PS.jl:57
.
ClusterValidityIndices.WB
— Typemutable struct WB <: CVI
Summary
The stateful information of the WB-Index (WB) Cluster Validity Index.
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- Q. Zhao, M. Xu, and P. Franti, "Sum-of-Squares Based Cluster Validity Index and Significance Analysis," in Adaptive and Natural Computing Algorithms, M. Kolehmainen, P. Toivanen, and B. Beliczynski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 313-322.
- Q. Zhao and P. Franti, "WB-index: A sum-of-squares based index for cluster validity," Data Knowledge Engineering, vol. 92, pp. 77-89, 2014.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.WB
— MethodWB() -> WB
Summary
Constructor for the WB-Index (WB) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a WB module
my_cvi = WB()
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- Q. Zhao, M. Xu, and P. Franti, "Sum-of-Squares Based Cluster Validity Index and Significance Analysis," in Adaptive and Natural Computing Algorithms, M. Kolehmainen, P. Toivanen, and B. Beliczynski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 313-322.
- Q. Zhao and P. Franti, "WB-index: A sum-of-squares based index for cluster validity," Data Knowledge Engineering, vol. 92, pp. 77-89, 2014.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Method List / Definition Locations
WB()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/WB.jl:69
.
ClusterValidityIndices.XB
— Typemutable struct XB <: CVI
Summary
The stateful information of the Xie-Beni (XB) Cluster Validity Index.
References
- X. L. Xie and G. Beni, "A Validity Measure for Fuzzy Clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-847, 1991.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
D::Matrix{Float64}
params::ClusterValidityIndices.CVIElasticParams
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.XB
— MethodXB() -> XB
Summary
Constructor for the Xie-Beni (XB) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a XB module
my_cvi = XB()
References
- X. L. Xie and G. Beni, "A Validity Measure for Fuzzy Clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-847, 1991.
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, and J. Bailey, "Online Cluster Validity Indices for Streaming Data," ArXiv e-prints, 2018, arXiv:1801.02937v1 [stat.ML]. [Online].
- M. Moshtaghi, J. C. Bezdek, S. M. Erfani, C. Leckie, J. Bailey, "Online cluster validity indices for performance monitoring of streaming data clustering," Int. J. Intell. Syst., pp. 1-23, 2018.
Method List / Definition Locations
XB()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/XB.jl:62
.
ClusterValidityIndices.cSIL
— Typemutable struct cSIL <: CVI
Summary
The stateful information of the Centroid-based Silhouette (cSIL) Cluster Validity Index.
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.
- M. Rawashdeh and A. Ralescu, "Center-wise intra-inter silhouettes," in Scalable Uncertainty Management, E. Hüllermeier, S. Link, T. Fober et al., Eds. Berlin, Heidelberg: Springer, 2012, pp. 406-419.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
params::ClusterValidityIndices.CVIElasticParams
S::Matrix{Float64}
sil_coefs::Vector{Float64}
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.cSIL
— MethodcSIL() -> cSIL
Summary
Constructor for the Centroid-based Silhouette (cSIL) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a cSIL module
my_cvi = cSIL()
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.
- M. Rawashdeh and A. Ralescu, "Center-wise intra-inter silhouettes," in Scalable Uncertainty Management, E. Hüllermeier, S. Link, T. Fober et al., Eds. Berlin, Heidelberg: Springer, 2012, pp. 406-419.
Method List / Definition Locations
cSIL()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/cSIL.jl:63
.
ClusterValidityIndices.rCIP
— Typemutable struct rCIP <: CVI
Summary
The stateful information of the (Renyi's) representative Cross Information Potential (rCIP) Cluster Validity Index.
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- E. Gokcay and J. C. Principe, "A new clustering evaluation function using Renyi's information potential," in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 6. Jun. 2000, pp. 3490-3493.
- E. Gokcay and J. C. Principe, "Information theoretic clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 158-171, Feb. 2002.
- D. Araújo, A. D. Neto, and A. Martins, "Representative cross information potential clustering," Pattern Recognit. Lett., vol. 34, no. 16, pp. 2181-2191, Dec. 2013.
- D. Araújo, A. D. Neto, and A. Martins, "Information-theoretic clustering: A representative and evolutionary approach," Expert Syst. Appl., vol. 40, no. 10, pp. 4190-4205, Aug. 2013.
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. John Wiley & Sons, 2000.
Fields
label_map::Dict{Int64, Int64}
dim::Int64
n_samples::Int64
mu::Vector{Float64}
D::Matrix{Float64}
delta_term::Matrix{Float64}
params::ClusterValidityIndices.CVIElasticParams
sigma::ElasticArrays.ElasticArray{Float64, 3, M, V} where {M, V<:DenseVector{Float64}}
constant::Float64
n_clusters::Int64
criterion_value::Float64
ClusterValidityIndices.rCIP
— MethodrCIP() -> rCIP
Summary
Constructor for the (Renyi's) representative Cross Information Potential (rCIP) Cluster Validity Index.
Examples
# Import the package
using ClusterValidityIndices
# Construct a rCIP module
my_cvi = rCIP()
References
- L. E. Brito da Silva, N. M. Melton, and D. C. Wunsch II, "Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study," ArXiv e-prints, Feb 2019, arXiv:1902.06711v1 [cs.LG].
- E. Gokcay and J. C. Principe, "A new clustering evaluation function using Renyi's information potential," in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 6. Jun. 2000, pp. 3490-3493.
- E. Gokcay and J. C. Principe, "Information theoretic clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 158-171, Feb. 2002.
- D. Araújo, A. D. Neto, and A. Martins, "Representative cross information potential clustering," Pattern Recognit. Lett., vol. 34, no. 16, pp. 2181-2191, Dec. 2013.
- D. Araújo, A. D. Neto, and A. Martins, "Information-theoretic clustering: A representative and evolutionary approach," Expert Syst. Appl., vol. 40, no. 10, pp. 4190-4205, Aug. 2013.
- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. John Wiley & Sons, 2000.
Method List / Definition Locations
rCIP()
defined at /home/runner/work/ClusterValidityIndices.jl/ClusterValidityIndices.jl/src/CVI/rCIP.jl:75
.
Constants
ClusterValidityIndices.CLUSTERVALIDITYINDICES_VERSION
— ConstantCLUSTERVALIDITYINDICES_VERSION
Description
A constant that contains the version of the installed ClusterValidityIndices.jl package.
This value is computed at compile time, so it may be used to programmatically verify the version of ClusterValidityIndices
that is installed in case a compat
entry in your Project.toml is missing or otherwise incorrect.
ClusterValidityIndices.CVI_MODULES
— ConstantCVI_MODULES
Description
List of implemented CVIs, useful for iteration. Each element is the struct abbreviated name for the CVI, which can be instantiated for iteration with the empty constructor.
For example:
using ClusterValidityIndices
instantiated_cvis = [local_cvi() for local_cvi in CVI_MODULES]