Developer Index
This page lists the types and functions that are internal to the DeepART package. Because they are not part of the public API, these names might change relatively frequently between versions and so should not be relied upon.
All internal names are listed in the Index, and each of these entries link to the docstrings in the Docs section.
Index
This section contains a list of internal names that link to their corresponding Documentation.
Methods
DeepART.CCDeepART.CCConvDeepART.L2TaskIncrementalDataSplitDeepART.TaskIncrementalDataSplitDeepART.W_normDeepART.add_node!DeepART.add_node!DeepART.art_learn_basicDeepART.art_learn_castDeepART.art_learn_headDeepART.basic_activationDeepART.basic_matchDeepART.basic_testDeepART.basic_train!DeepART.build_art_statsDeepART.class_incrementalizeDeepART.complement_codeDeepART.complement_code_convDeepART.config_dirDeepART.configs_dirDeepART.copy_stats!DeepART.create_complex_condensed_plot_altDeepART.create_confusion_heatmapDeepART.create_custom_confusion_heatmapDeepART.create_unicode_confusion_heatmapDeepART.data_dirDeepART.element_minDeepART.evaluate_agent!DeepART.fields_to_dict!DeepART.flattenDeepART.flattyDeepART.flattyDeepART.flatty_hottyDeepART.flatty_hottyDeepART.flux_accuracyDeepART.forwardDeepART.forwardDeepART.full_scenarioDeepART.gen_all_scenariosDeepART.gen_permutation_groupingsDeepART.gen_random_groupingsDeepART.gen_scenario_from_groupDeepART.gen_scenariosDeepART.get_EWC_lossDeepART.get_accuraciesDeepART.get_betaDeepART.get_cifar10DeepART.get_cifar100_coarseDeepART.get_cifar100_fineDeepART.get_confusionDeepART.get_conv_modelDeepART.get_data_subsetDeepART.get_denseDeepART.get_dense_modelDeepART.get_dist_groupingDeepART.get_fashionmnistDeepART.get_featuresDeepART.get_featuresDeepART.get_fuzzy_headDeepART.get_groupingDeepART.get_headDeepART.get_hypersphere_headDeepART.get_index_from_nameDeepART.get_isrDeepART.get_isr_dirDeepART.get_labelDeepART.get_last_f1DeepART.get_last_f2DeepART.get_loaderDeepART.get_loaderDeepART.get_mnistDeepART.get_module_from_optionsDeepART.get_module_from_optionsDeepART.get_nDeepART.get_normalized_confusionDeepART.get_omniglotDeepART.get_perfDeepART.get_rep_convDeepART.get_rep_denseDeepART.get_rep_fia_convDeepART.get_rep_fia_denseDeepART.get_sampleDeepART.get_sampleDeepART.get_weightsDeepART.get_x_subsetDeepART.get_y_subsetDeepART.group_datasetsDeepART.incremental_classifyDeepART.incremental_classifyDeepART.incremental_supervised_train!DeepART.incremental_supervised_train!DeepART.incremental_supervised_train!DeepART.initialize_exp_queue!DeepART.instarDeepART.instarDeepART.is_completeDeepART.json_loadDeepART.json_saveDeepART.learn!DeepART.learn_SimpleDeepART!DeepART.learn_modelDeepART.learn_modelDeepART.load_all_datasetsDeepART.load_data_package_datasetDeepART.load_dataset_fileDeepART.load_one_datasetDeepART.load_sim_resultsDeepART.log_art_stats!DeepART.log_dataDeepART.multi_activationsDeepART.multi_activationsDeepART.n_classorDeepART.normalize_FIMDeepART.one_coldifyDeepART.one_hotDeepART.order_to_stringDeepART.order_to_task_stringsDeepART.paper_results_dirDeepART.percentage_formatterDeepART.random_dist_groupingDeepART.random_groupingDeepART.results_dirDeepART.run_scenarioDeepART.sanitize_block_typeDeepART.sanitize_in_listDeepART.sanitize_log_stateDeepART.save_simDeepART.saveplotDeepART.shuffle_pairsDeepART.string_to_ordersDeepART.supervised_train!DeepART.task_incrementalizeDeepART.tensorize_datasetDeepART.tensorize_datasplitDeepART.term_accuracyDeepART.term_predsDeepART.text_targets_to_intsDeepART.train!DeepART.train_inc!DeepART.train_test!DeepART.tt_basic!DeepART.tt_distDeepART.tt_inc!DeepART.work_dirDeepART.x_W_min_norm
Types
DeepART.ARTINSTARTDeepART.ARTINSTARTDeepART.ARTINSTARTDeepART.AbstractAgentDeepART.AbstractFeaturesDeepART.AbstractLabelsDeepART.AgentDeepART.AgentDeepART.AgentDeepART.ClassIncrementalDataSplitDeepART.ClassIncrementalDataSplitDeepART.ClassIncrementalSupervisedDatasetDeepART.CommonARTModuleDeepART.CustomLayerDeepART.DataSplitDeepART.DataSplitDeepART.DataSplitDeepART.DataSplitDeepART.DeepARTModuleDeepART.DeepHeadARTDeepART.DeepHeadARTDeepART.DeepHeadARTDeepART.DeeperARTDeepART.DeeperARTDeepART.DeeperARTDeepART.DenseSpecifierDeepART.EWCDeepART.EWCLossOptsDeepART.EWCLossStateDeepART.EWCLossStateDeepART.EWCLossStateDeepART.EWCStateDeepART.ExperienceDeepART.ExperienceDeepART.ExperienceQueueDeepART.ExperienceQueueContainerDeepART.ExperienceQueueContainerDeepART.ExperienceQueueContainerDeepART.FIADeepART.FIADeepART.FIADeepART.FluxFloatDeepART.IEWCDeepART.IEWCStateDeepART.INSTARTDeepART.INSTARTDeepART.INSTARTDeepART.MultiHeadFieldDeepART.MultiHeadFieldDeepART.MultiHeadFieldDeepART.SequenceNumsDeepART.SimpleDeepARTDeepART.SimpleDeepARTDeepART.SimpleDeepARTDeepART.SingleFuzzyDeepART.SingleFuzzyDeepART.SingleFuzzyDeepART.SizeTupleDeepART.StatsDictDeepART.SupervisedDatasetDeepART.WTANetDeepART.WTANetDeepART.WTANetDeepART.opts_ARTINSTARTDeepART.opts_DeepHeadARTDeepART.opts_DeeperARTDeepART.opts_FIADeepART.opts_INSTARTDeepART.opts_MultiHeadFieldDeepART.opts_SimpleDeepARTDeepART.opts_WTANet
Constants
DeepART.ARG_COMMONARTMODULEDeepART.ARG_CONFIGDeepART.ARG_CONFIG_DICTDeepART.ARG_CONFIG_FILEDeepART.ARG_DATASPLITDeepART.ARG_DEEPARTMODULEDeepART.ARG_DEEPHEADARTDeepART.ARG_FILENAMEDeepART.ARG_INDEXDeepART.ARG_MULTIHEADFIELDDeepART.ARG_N_CLASSDeepART.ARG_N_TESTDeepART.ARG_N_TRAINDeepART.ARG_PDeepART.ARG_PLOTDeepART.ARG_SHUFFLEDeepART.ARG_SIMPLEDEEPARTDeepART.ARG_SIM_DDeepART.ARG_SIM_DIR_FUNCDeepART.ARG_SIM_OPTSDeepART.ARG_SIZE_TUPLEDeepART.ARG_SUPERVISEDDATASETDeepART.ARG_TIDATADeepART.ARG_XDeepART.ARG_YDeepART.ART_ARG_DOCSTRINGDeepART.ART_X_W_ARGSDeepART.BLOCK_TYPESDeepART.COLORSCHEMEDeepART.DATA_DISPATCHDeepART.DATA_PACKAGE_NAMESDeepART.DEFAULT_HEAD_SPECDeepART.DEFAULT_N_PROCS_UNIXDeepART.DEFAULT_N_PROCS_WINDOWSDeepART.DEFAULT_PDeepART.DEFAULT_SHARED_SPECDeepART.DEFAULT_SHUFFLEDeepART.DPIDeepART.FLUXONEHOTDeepART.FONTFAMILYDeepART.GRADIENTSCHEMEDeepART.IInfDeepART.JSON_INDENTDeepART.LINEWIDTHDeepART.LOG_STATESDeepART.SQUARE_SIZEDeepART.W_ARG_DOCSTINGDeepART.X_ARG_DOCSTRINGDeepART._ARG_DRWATSONDeepART._COMMON_DOCDeepART.n_colorsDeepART.pubu_9DeepART.pubu_9_rawDeepART.ylgn_9DeepART.ylgn_9_raw
Docs
Documentation for all internal names are listed below.
DeepART.ARG_COMMONARTMODULE — ConstantDeepART.ARG_CONFIG — ConstantARG_CONFIG
Description
Common docstring; the configuration tuple.
DeepART.ARG_CONFIG_DICT — ConstantARGCONFIGDICT
Description
Common docstring: config dictionary argument.
DeepART.ARG_CONFIG_FILE — ConstantARGCONFIGFILE
Description
Common docstring: config filename argument.
DeepART.ARG_DATASPLIT — ConstantDeepART.ARG_DEEPARTMODULE — ConstantDeepART.ARG_DEEPHEADART — ConstantDeepART.ARG_FILENAME — ConstantARG_FILENAME
Description
Common docstring: argument for a file name.
DeepART.ARG_INDEX — ConstantARG_INDEX
Description
Common docstring: argument for an index parameter.
DeepART.ARG_MULTIHEADFIELD — ConstantDeepART.ARG_N_CLASS — ConstantARGNCLASS
Description
Common docstring: argument for the number of classes.
DeepART.ARG_N_TEST — ConstantARGNTEST
Description
Common docstring: argument for the number of testing samples to use.
DeepART.ARG_N_TRAIN — ConstantARGNTRAIN
Description
Common docstring: argument for the number of training samples to use.
DeepART.ARG_P — ConstantARG_P
Description
Common docstring: argument for a split ratio p.
DeepART.ARG_PLOT — ConstantARG_PLOT
Description
Common docstring: argument for an existing Plots.Plot object to plot atop.
DeepART.ARG_SHUFFLE — ConstantARG_SHUFFLE
Description
Common docstring: argument for a training dataset shuffle flag.
DeepART.ARG_SIMPLEDEEPART — ConstantDeepART.ARG_SIM_D — ConstantARGSIMD
Description
Common docstring: argument for the simulation options dictionary.
DeepART.ARG_SIM_DIR_FUNC — ConstantARGSIMDIR_FUNC
Description
Common docstring: argument for a directory function
DeepART.ARG_SIM_OPTS — ConstantARGSIMOPTS
Description
Common docstring: argument for additional simulation options.
DeepART.ARG_SIZE_TUPLE — ConstantARGSIZETUPLE
Description
The model input size tuple argument docstring.
DeepART.ARG_SUPERVISEDDATASET — ConstantDeepART.ARG_TIDATA — ConstantARG_TIDATA
Description
Common docstring: argument for task-incremental data splits implemented as a ClassIncrementalDataSplit.
DeepART.ARG_X — ConstantARG_X
Description
Common docstring: argument for input data of arbitrary dimension.
DeepART.ARG_Y — ConstantARG_Y
Description
Common docstring: argument for a label 'y'.
DeepART.ART_ARG_DOCSTRING — ConstantARTARGDOCSTRING
Description
Common docstring: argument for an ARTModule.
DeepART.ART_X_W_ARGS — ConstantARTXW_ARGS
Description
Common docstring: shared arguments string for methods using an ART module, sample 'x', and weight vector 'W'.
DeepART.BLOCK_TYPES — ConstantBLOCK_TYPES
Description
The names of the blocks that are encountered during L2 experiments.
DeepART.COLORSCHEME — ConstantPlotting colorscheme.
DeepART.CommonARTModule — TypeDeepART.DATA_DISPATCH — ConstantDATA_DISPATCH
Description
A map of dataset names to their loading functions.
DeepART.DATA_PACKAGE_NAMES — ConstantDATAPACKAGENAMES
Description
A list of the data package names, mainly used as clustering benchmarks.
DeepART.DEFAULT_HEAD_SPEC — ConstantDEFAULTHEADSPEC
Description
The default shared head layers as a list of a number of nodes per layer, including the inputs and outputs.
DeepART.DEFAULT_N_PROCS_UNIX — ConstantThe default number of processes to start in distributed experiments on Linux.
DeepART.DEFAULT_N_PROCS_WINDOWS — ConstantThe default number of processes to start in distributed experiments on Windows.
DeepART.DEFAULT_P — ConstantThe default split ration for train/test datasets.
DeepART.DEFAULT_SHARED_SPEC — ConstantDEFAULTSHAREDSPEC
Description
The default shared hidden layer as a list of a number of nodes per layer, including the inputs and outputs.
DeepART.DEFAULT_SHUFFLE — ConstantThe default shuffle flag for setting up training datasets.
DeepART.DPI — ConstantThe default plotting dots-per-inch for saving.
DeepART.FLUXONEHOT — ConstantFlag for using Flux.onehotbatch or an internal implementation.
DeepART.FONTFAMILY — ConstantPlotting fontfamily for all text.
DeepART.GRADIENTSCHEME — ConstantHeatmap color gradient.
DeepART.IInf — ConstantIInf
Description
Infinity for integers, used for getting the minimum of training/testing values.
DeepART.JSON_INDENT — ConstantJSON_INDENT
Description
Constant for pretty indentation spacing in JSON files.
DeepART.LINEWIDTH — ConstantPlotting linewidth.
DeepART.LOG_STATES — ConstantLOG_STATES
Description
The enumerated states that an L2 logger log can be in.
DeepART.SQUARE_SIZE — ConstantAspect ratio correction for heatmap
DeepART.W_ARG_DOCSTING — ConstantWARGDOCSTING
Description
Common docstring: argument for a weight vector 'W'.
DeepART.X_ARG_DOCSTRING — ConstantXARGDOCSTRING
Description
Common docstring: argument for a sample 'x'.
DeepART._ARG_DRWATSON — ConstantARGDRWATSON
Description
Common docstring: the arguments to DrWatson-style directory functions.
DeepART._COMMON_DOC — ConstantCOMMONDOC
Description
Docstring prefix denoting that the constant is used as a common docstring element for other docstrings.
DeepART.n_colors — ConstantInferred number of colors used from the color palettes.
DeepART.pubu_9 — ConstantPurple-blue-9 ColorScheme, inferred from the RGB values
DeepART.pubu_9_raw — ConstantPurple-blue-9 raw RGB values, range [0, 1].
DeepART.ylgn_9 — ConstantYellow-green-9 ColorScheme, inferred from the RGB values.
DeepART.ylgn_9_raw — ConstantYellow-green-9 raw RGB values, range [0, 1].
DeepART.ARTINSTART — Typemutable struct ARTINSTART{T<:Flux.Chain, U<:AdaptiveResonance.ARTModule} <: DeepART.DeepARTModuleSummary
Stateful information of an ARTINSTART model.
Fields
model::Flux.Chain: The shared model.
head::AdaptiveResonance.ARTModule: The heads.
opts::DeepART.opts_ARTINSTART: Anopts_ARTINSTARToptions container.
n_categories::Int64: Number of category weights (F2 nodes).
stats::Dict{String, Any}: The statistics dictionary for logging.
DeepART.ARTINSTART — MethodConstructor for a ARTINSTART taking a opts_ARTINSTART for construction options.
Arguments
opts::opts_ARTINSTART: theopts_ARTINSTARTthat specifies the construction options.
DeepART.ARTINSTART — MethodKeyword argument constructor for a ARTINSTART module passing the keyword arguments to the opts_ARTINSTART for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.AbstractAgent — Typeabstract type AbstractAgentSummary
L2 agent supertype.
Fields
DeepART.AbstractFeatures — TypeAbstractFeatures
Description
Abstract type alias for features.
DeepART.AbstractLabels — TypeAbstractLabels
Description
Abstract type alias for labels.
DeepART.Agent — Typestruct Agent{T} <: DeepART.AbstractAgentSummary
L2 AbstractAgent struct.
Fields
agent::Any: The DDVFA module.
params::Dict: Parameters used for l2logging.
scenario::DeepART.ExperienceQueueContainer: Container for theExperienceQueue.
DeepART.Agent — MethodConstructor for a Agent using the scenario dictionary and optional DDVFA keyword argument options.
Arguments
scenario::AbstractDict: l2logger scenario as a dictionary.
DeepART.Agent — MethodCreates an agent with an empty experience queue.
Arguments
agent::T: the agent module.opts: the options struct used to initialize the module and set the logging params.
DeepART.ClassIncrementalDataSplit — Typestruct ClassIncrementalDataSplitSummary
A class-incremental variant of a DataSplit containing instead vectors of SupervisedDatasets.
Fields
train::Vector{DeepART.SupervisedDataset}: The vector of training class datasets.
test::Vector{DeepART.SupervisedDataset}: The vector of testing class datasets.
DeepART.ClassIncrementalDataSplit — MethodClassIncrementalDataSplit(
datasplit::DeepART.DataSplit
) -> DeepART.ClassIncrementalDataSplit
Summary
Constructor for a ClassIncrementalDataSplit taking a normal DataSplit.
Arguments
data::DataSplit: aDataSplitcontainer of a supervised train/test split.
Method List / Definition Locations
ClassIncrementalDataSplit(datasplit)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:115.
DeepART.ClassIncrementalSupervisedDataset — TypeClassIncrementalSupervisedDataset
Description
Type alias for a a class-incremental dataset as a vector of SupervisedDatasets.
DeepART.CustomLayer — Typeabstract type CustomLayerSummary
Abstract type for custom Flux.jl layers.
Fields
DeepART.DataSplit — Typestruct DataSplitSummary
A train/test split of supervised datasets.
Fields
train::DeepART.SupervisedDataset: The training portion of the dataset.
test::DeepART.SupervisedDataset: The test portion of the dataset.
DeepART.DataSplit — MethodDataSplit(
X_train::AbstractArray{T} where T<:Real,
y_train::AbstractArray{T} where T<:Integer,
X_test::AbstractArray{T} where T<:Real,
y_test::AbstractArray{T} where T<:Integer;
shuffle
) -> DeepART.DataSplit
Summary
Convenience constructor for a supervised DataSplit that takes each set of features x and labels yseparately.
Arguments
X_train::AbstractFeatures: the training features.y_train::AbstractLabels: the training integer labels.X_test::AbstractFeatures: the testing features.y_test::AbstractLabels: the testing integer labels.shuffle::Bool: flag for shuffling the data, default true.
Method List / Definition Locations
DataSplit(X_train, y_train, X_test, y_test; shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:37.
DeepART.DataSplit — MethodDataSplit(
features::AbstractArray{T} where T<:Real,
labels::AbstractArray{T} where T<:Integer;
p,
shuffle
) -> DeepART.DataSplit
Summary
Constructor for a DataSplit taking a set of features and options for the split ratio and shuffle flag.
Arguments
features::AbstractFeatures: the input features as an array of samples.labels::AbstractLabels: the supervised labels.p::Float: kwarg, the split ratio ∈(0, 1), default 0.8.shuffle::Bool: flag for shuffling the data, default true.
Method List / Definition Locations
DataSplit(features, labels; p, shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:67.
DeepART.DataSplit — MethodDataSplit(
dataset::AbstractMatrix;
shuffle,
p
) -> DeepART.DataSplit
Summary
Constructs a DataSplit from an existing dataset.
This assumes that the last column is the labels and all others are features.
Arguments
dataset::AbstractMatrix: the dataset to split.shuffle::Bool: flag for shuffling the data, default true.p::Float: kwarg, the split ratio ∈(0, 1), default 0.8.
Method List / Definition Locations
DataSplit(dataset; shuffle, p)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:650.
DeepART.DeepARTModule — Typeabstract type DeepARTModuleSummary
Supertype of all DeepART modules that adhere to the train! and classify usages.
Fields
DeepART.DeepHeadART — Typemutable struct DeepHeadART{T<:Flux.Chain, U<:Flux.Chain, V<:Flux.Chain} <: AdaptiveResonance.ARTModuleSummary
Stateful information of a DeepHeadART module.
Fields
F1::Flux.Chain: Feature presentation layer.
F2::DeepART.MultiHeadField: Feedback expectancy layer.
opts::DeepART.opts_DeepHeadART: Anopts_DeepHeadARToptions container.
config::AdaptiveResonance.DataConfig: Data configuration struct.
labels::Vector{Int64}: Incremental list of labels corresponding to each F2 node, self-prescribed or supervised.
T::Vector{Float64}: Activation values for every weight for a given sample.
M::Vector{Float64}: Match values for every weight for a given sample.
n_instance::Vector{Int64}: Number of weights associated with each category.
n_categories::Int64: Number of category weights (F2 nodes).
DeepART.DeepHeadART — MethodConstructor for a DeepHeadART taking a opts_DeepHeadART for construction options.
Arguments
opts::opts_DeepHeadART: theopts_DeepHeadARTthat specifies the construction options.
DeepART.DeepHeadART — MethodKeyword argument constructor for a DeepHeadART module passing the keyword arguments to the opts_DeepHeadART for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.DeeperART — Typestruct DeeperART{T<:Flux.Chain, U<:Flux.Chain}Summary
Stateful information of a DeeperART module.
Fields
F1::Flux.Chain: Feature presentation layer.
F2::Flux.Chain: Feedback expectancy layer.
opts::DeepART.opts_DeeperART: Anopts_DeeperARToptions container.
DeepART.DeeperART — MethodConstructor for a DeeperART taking a opts_DeeperART for construction options.
Arguments
opts::opts_DeeperART: theopts_DeeperARTthat specifies the construction options.
DeepART.DeeperART — MethodKeyword argument constructor for a DeeperART module passing the keyword arguments to the opts_DeeperART for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.DenseSpecifier — TypeDenseSpecifier
Description
A specifier for the number of nodes per layer in a dense feedforward network.
DeepART.EWC — Typemutable struct EWC <: Optimisers.AbstractRuleSummary
The parameters if an EWCIncremental optimiser.
Fields
eta::Float64: Default: 0.01lambda::Float64: Default: 0.1decay::Float64: Default: 0.9alpha::Float64: Default: 0.1new_task::Bool: Default: true
DeepART.EWCLossOpts — Typemutable struct EWCLossOptsSummary
Options for the EWCLossState.
Fields
lambda::Float64: EWC regularization strength. Default: 1.0alpha::Float64: EWC FIM update ratio. Default: 0.1first_task::Bool: Flag for if the first task is being trained upon. Default: truenormalize::Bool: Flag for if the FIM should be normalized. Default: true
DeepART.EWCLossState — Typestruct EWCLossStateSummary
Custom state for the EWCState optimiser.
Fields
FIM::Any: The Fisher Information Matrix (FIM) approximation.
old_params::Any: The 'old parameters' that the FIM are computed on.
DeepART.EWCLossState — MethodEWCLossState(
state::DeepART.EWCLossState,
o::DeepART.EWCLossOpts,
x,
dx,
n_samples
) -> DeepART.EWCLossState
Summary
Constructor for a new EWCLossState given an old state, the options, parameters, and the gradient.
Arguments
state::EWCLossState: the old state.o::EWCLossOpts: the options for the EWC loss.x: the flat network parameters.dx: the gradient of the loss with respect to the parameters.
Method List / Definition Locations
EWCLossState(state, o, x, dx, n_samples)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWCLoss.jl:88.
DeepART.EWCLossState — MethodEWCLossState() -> DeepART.EWCLossState
Summary
Empty constructor for the EWCLossState.
Method List / Definition Locations
EWCLossState()defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWCLoss.jl:67.
DeepART.EWCState — Typestruct EWCStateSummary
Custom state for the EWCState optimiser.
Fields
FIM::Any: The Fisher Information Matrix (FIM) approximation.
old_params::Any: The 'old parameters' that the FIM are computed on.
DeepART.Experience — Typestruct ExperienceSummary
Experience block for an agent.
Taken from l2logger_template.
Fields
task_name::String: The task name.
seq_nums::DeepART.SequenceNums: The sequence numbers (block and experience count).
block_type::String: The block type, valid values are ∈ ["train", "test"].
update_model::Bool: Flag for updating the model (i.e., true is to train, false is to classify).
DeepART.Experience — MethodExperience(
task_name::AbstractString,
seq_nums::DeepART.SequenceNums,
block_type::AbstractString
) -> DeepART.Experience
Summary
Constructs an Experience, setting the update_model field based upon the block type.
Arguments
task_name::AbstractString: the name of the current task.seq_nums::SequenceNums: the block and experience number of theExperience.block_type::AbstractString: the block type ∈ ["train", "test"]. Using "train" setsupdate_modelto true, "test" to false.
Method List / Definition Locations
Experience(task_name, seq_nums, block_type)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/experience.jl:76.
DeepART.ExperienceQueue — TypeDeepART.ExperienceQueueContainer — Typestruct ExperienceQueueContainerSummary
Container for the ExperienceQueue and some statistics about it.
Fields
queue::DataStructures.Deque{DeepART.Experience}: TheExperienceQueueitself.
stats::Dict{String, Any}: The statistics about the queue. NOTE These statistics reflect the queue at construction, not after any processing.
DeepART.ExperienceQueueContainer — MethodExperienceQueueContainer(
scenario_dict::AbstractDict
) -> DeepART.ExperienceQueueContainer
Summary
Creates a queue of Experiences from the scenario dictionary.
Arguments
scenario_dict::AbstractDict: the scenario dictionary.
Method List / Definition Locations
ExperienceQueueContainer(scenario_dict)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:138.
DeepART.ExperienceQueueContainer — MethodExperienceQueueContainer(
) -> DeepART.ExperienceQueueContainer
Summary
Creates an empty ExperienceQueueContainer with an empty queue and zeroed stats.
Method List / Definition Locations
ExperienceQueueContainer()defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:113.
DeepART.FIA — Typemutable struct FIA{T<:Flux.Chain} <: DeepART.DeepARTModuleSummary
Stateful information of an FIA model.
Fields
model::Flux.Chain: The shared model.
opts::DeepART.opts_FIA: Anopts_FIAoptions container.
stats::Dict{String, Any}: The statistics dictionary for logging.
DeepART.FIA — MethodConstructor for a FIA taking a opts_FIA for construction options.
Arguments
opts::opts_FIA: theopts_FIAthat specifies the construction options.
DeepART.FIA — MethodKeyword argument constructor for a FIA module passing the keyword arguments to the opts_FIA for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.FluxFloat — TypeDefinition of the precision used for Flux computations; used for loading data and constructing objects depending on Flux elements.
DeepART.IEWC — Typemutable struct IEWC <: Optimisers.AbstractRuleSummary
The parameters if an IEWC optimiser.
Fields
eta::Float64: Default: 0.01lambda::Float64: Default: 0.1decay::Float64: Default: 0.9alpha::Float64: Default: 0.1new_task::Bool: Default: true
DeepART.IEWCState — Typemutable struct IEWCState{T<:AbstractArray, U<:AbstractArray}Summary
Custom state for the IEWC optimiser.
Fields
FIM::Vector{T} where T<:AbstractArray: The Fisher Information Matrix (FIM) approximation.
old_params::Vector{U} where U<:AbstractArray: The 'old parameters'.
DeepART.INSTART — Typemutable struct INSTART{T<:Flux.Chain, U<:Flux.Chain} <: DeepART.DeepARTModuleSummary
Stateful information of an INSTART model.
Fields
model::Flux.Chain: The shared model.
heads::Vector{U} where U<:Flux.Chain: The heads.
opts::DeepART.opts_INSTART: Anopts_INSTARToptions container.
labels::Vector{Int64}: Incremental list of labels corresponding to each F2 node, self-prescribed or supervised.
T::Vector{Float64}: Activation values for every weight for a given sample.
M::Vector{Float64}: Match values for every weight for a given sample.
n_instance::Vector{Int64}: Number of weights associated with each category.
n_categories::Int64: Number of category weights (F2 nodes).
stats::Dict{String, Any}: The statistics dictionary for logging.
DeepART.INSTART — MethodConstructor for a INSTART taking a opts_INSTART for construction options.
Arguments
opts::opts_INSTART: theopts_INSTARTthat specifies the construction options.
DeepART.INSTART — MethodKeyword argument constructor for a INSTART module passing the keyword arguments to the opts_INSTART for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.MultiHeadField — Typestruct MultiHeadField{T<:Flux.Chain, J<:Flux.Chain}Summary
Container for a multihead DeeperART neural network field.
Fields
shared::Flux.Chain: The single shared layers object.
heads::Vector{J} where J<:Flux.Chain: The heads of the network as a list of layers.
opts::DeepART.opts_MultiHeadField: Container of theopts_MultiHeadFieldthat created this field.
DeepART.MultiHeadField — MethodConstructor for a MultiHeadField taking a opts_MultiHeadField for construction options.
Arguments
opts::opts_MultiHeadField: theopts_MultiHeadFieldthat specifies the construction options.
DeepART.MultiHeadField — MethodKeyword argument constructor for a MultiHeadField module passing the keyword arguments to the opts_MultiHeadField for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.SequenceNums — Typestruct SequenceNumsSummary
Sequence numbers for a block and Experience.
Taken from l2logger_template.
Fields
block_num::Int64: The block number.
exp_num::Int64: The experience number.
task_num::Int64: The task-specific count.
DeepART.SimpleDeepART — Typestruct SimpleDeepART{T<:Flux.Chain}Summary
Container for a simple DeepART module.
Fields
model::Flux.Chain: TheFlux.Chainfeature extractor model.
art::AdaptiveResonance.FuzzyART: The FuzzyART module.
opts::DeepART.opts_SimpleDeepART: Theopts_SimpleDeepARToptions and flags for the module.
model_dim::Int64: The model output dimension for reference.
DeepART.SimpleDeepART — MethodMain constructor for a SimpleDeepART module.
Arguments
opts::opts_SimpleDeepART: the [opts_SimpleDeepART] options driving the construction.
DeepART.SimpleDeepART — MethodKeyword argument constructor for a SimpleDeepART module passing the keyword arguments to the opts_SimpleDeepART for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.SingleFuzzy — Typestruct SingleFuzzy{M<:(AbstractVector)} <: DeepART.CustomLayerSummary
A single FuzzyART-like layer for a Flux.jl model, implemented for use in a vector container.
Fields
weight::AbstractVector: The weight vector for the layer.
DeepART.SingleFuzzy — MethodInference definition for a SingleFuzzy layer computing the activation and match values.
DeepART.SingleFuzzy — MethodConstructor for a SingleFuzzy layer taking the inut dimension and an optional weight initialization function.
DeepART.SizeTuple — TypeSizeTuple
Description
Type alias for the model input size tuple.
DeepART.StatsDict — TypeStatsDict
Description
Alias for a statistics dictionary being string keys mapping to any object.
DeepART.SupervisedDataset — Typestruct SupervisedDataset{T<:(AbstractArray{T} where T<:Real), U<:(AbstractArray{T} where T<:Integer)}Summary
A struct containing a supervised set of features in a matrix x mapping to integer labels y.
Fields
x::AbstractArray{T} where T<:Real: A set of features.
y::AbstractArray{T} where T<:Integer: The labels corresponding to each feature.
DeepART.WTANet — Typestruct WTANet{T<:Flux.Chain, U<:NamedTuple}Summary
Container for the stateful information of a WTANet module.
Fields
model::Flux.Chain: The feedforward network.
optim::NamedTuple: Container for the optimiser.
opts::DeepART.opts_WTANet: The options for construction and usage.
DeepART.WTANet — MethodConstructor for a WTANet taking a opts_WTANet for construction options.
Arguments
opts::opts_WTANet: theopts_WTANetthat specifies the construction options.
DeepART.WTANet — MethodKeyword argument constructor for a WTANet module passing the keyword arguments to the opts_WTANet for the module.
Arguments
kwargs...: the options keyword arguments.
DeepART.opts_ARTINSTART — Typestruct opts_ARTINSTARTSummary
Options container for a ARTINSTART module.
Fields
rho::Float64: The vigilance parameter of theARTINSTARTmodule, rho ∈ (0.0, 1.0]. Default: 0.6eta::Float64: Instar learning rate. Default: 0.1alpha::Any: Choice parameter: alpha > 0. Default: 0.001beta::Any: Deep model learning parameter: beta ∈ (0, 1]. Default: 1.0beta_s::Any: Head learning parameter: beta ∈ (0, 1]. Default: 0.01uncommitted::Bool: Flag to use an uncommitted node when learning.If true, new weights are created with ones(dim) and learn on the complement-coded sample. If false, fast-committing is used where the new weight is simply the complement-coded sample. Default: false
head_dim::Int64: The dimension of the interaction field. Default: 128gpu::Bool: Flag for pushing the models to the GPU. Default: falseupdate::String: Update method ∈ ["art", "instar"]. Default: artsoftwta::Bool: Soft WTA update rule flag. Default: falseleader::Bool: Flag for the use of a leader neuron, which negates the use of the SFAM head. Default: false
DeepART.opts_DeepHeadART — Typestruct opts_DeepHeadARTSummary
Options container for a DeepHeadART module.
Fields
rho::Float64: The vigilance parameter of theDeepHeadARTmodule, rho ∈ (0.0, 1.0]. Default: 0.6eta::Float64: Instar learning rate. Default: 0.1alpha::Any: Choice parameter: alpha > 0. Default: 0.001beta::Any: Learning parameter: beta ∈ (0, 1]. Default: 1.0F1_spec::Vector{Int64}: Simple dense specifier for the F1 layer. Default: [2, 5, 3]F2_shared::Vector{Int64}: Shared dense specifier for the F2 layer. Default: [3, 6, 3]F2_heads::Vector{Int64}: Shared dense specifier for the F2 layer. Default: [3, 5, 3]
DeepART.opts_DeeperART — Typestruct opts_DeeperARTSummary
Options container for a DeeperART module.
Fields
rho::Float64: The vigilance parameter of theDeeperARTmodule, rho ∈ (0.0, 1.0]. Default: 0.6F1_spec::Vector{Int64}: Simple dense specifier for the F1 layer. Default: [2, 5, 3]F2_spec::Vector{Int64}: Simple dense specifier for the F2 layer. Default: [3, 5, 3]
DeepART.opts_FIA — Typestruct opts_FIASummary
Options container for a FIA module.
Fields
rho::Float32: The vigilance parameter of theFIAmodule, rho ∈ (0.0, 1.0]. Default: 0.6eta::Float32: Instar learning rate. Default: 0.1alpha::Float32: Choice parameter: alpha > 0. Default: 0.001beta::Float32: Deep model learning parameter: beta ∈ (0, 1]. Default: 1.0uncommitted::Bool: Flag to use an uncommitted node when learning.If true, new weights are created with ones(dim) and learn on the complement-coded sample. If false, fast-committing is used where the new weight is simply the complement-coded sample. Default: false
gpu::Bool: Flag for pushing the models to the GPU. Default: falseupdate::String: Update method ∈ ["art", "instar"]. Default: artsoftwta::Bool: Soft WTA update rule flag. Default: falseleader::Bool: Flag for the use of a leader neuron, which negates the use of the SFAM head. Default: false
DeepART.opts_INSTART — Typestruct opts_INSTARTSummary
Options container for a INSTART module.
Fields
rho::Float64: The vigilance parameter of theINSTARTmodule, rho ∈ (0.0, 1.0]. Default: 0.6eta::Float64: Instar learning rate. Default: 0.1alpha::Any: Choice parameter: alpha > 0. Default: 0.001beta::Any: Learning parameter: beta ∈ (0, 1]. Default: 1.0uncommitted::Bool: Flag to use an uncommitted node when learning.If true, new weights are created with ones(dim) and learn on the complement-coded sample. If false, fast-committing is used where the new weight is simply the complement-coded sample. Default: false
head_dim::Int64: The dimension of the interaction field. Default: 128gpu::Bool: Flag for pushing the models to the GPU. Default: falseupdate::String: Update method ∈ ["art", "instar"]. Default: artsoftwta::Bool: Soft WTA update rule flag. Default: falsehead::String: Head layer type ∈ ["fuzzy", "hypersphere"]. Default: fuzzyleader::Bool: Flag for the use of a leader neuron, which negates the use of the SFAM head. Default: false
DeepART.opts_MultiHeadField — Typestruct opts_MultiHeadFieldSummary
The options container for a MultiHeadField module.
Fields
shared_spec::Vector{Int64}: The shared hidden layer as a list of a number of nodes per layer, including the inputs and outputs. Default: DEFAULTSHAREDSPEChead_spec::Vector{Int64}: The head layers specifier as a list of a number of nodes per layer, including the inputs and outputs. Default: DEFAULTHEADSPECeta::Float64: Instar learning rate. Default: 0.1
DeepART.opts_SimpleDeepART — Typestruct opts_SimpleDeepARTSummary
Options for the construction and usage of a SimpleDeepART module.
Fields
size_tuple::Tuple: The model input size tuple. Default: (28, 28, 1, 1)conv::Bool: Flag for if the model is convolutional. Default: trueopts_fuzzyart::AdaptiveResonance.opts_FuzzyART: The FuzzyART module options. Default: opts_FuzzyART()
DeepART.opts_WTANet — Typestruct opts_WTANetSummary
Options for the construction and usage of a WTANet module.
Fields
rho::Float64: The vigilance parameter of theWTANetmodule, rho ∈ (0.0, 1.0]. Default: 0.6optimiser::Symbol: Name of the optimiser to use. Default: :Descentmodel_spec::Vector{Int64}: Simple dense specifier for the model. Default: [2, 10, 10]
Base.getindex — Methodgetindex(
data::DeepART.SupervisedDataset,
ix::Integer
) -> Tuple{Any, Any}
Summary
Overload for getting a UnitRange of a SupervisedDataset.
Method List / Definition Locations
getindex(data, ix)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:15.
Base.getindex — Methodgetindex(
data::DeepART.SupervisedDataset,
ix::UnitRange
) -> Tuple{Any, Any}
Summary
Overload for getting a UnitRange of a SupervisedDataset.
Method List / Definition Locations
getindex(data, ix)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:25.
Base.length — Methodlength(data::DeepART.SupervisedDataset) -> Any
Summary
Overload for the length of a SupervisedDataset.
Method List / Definition Locations
length(data)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:44.
Base.show — Methodshow(
io::IO,
queue::DataStructures.Deque{DeepART.Experience}
)
Summary
Overload of the show function for ExperienceQueue.
Arguments
io::IO: the current IO stream.cont::ExperienceQueueContainer: theExperienceQueueContainerto print/display.
Method List / Definition Locations
show(io, queue)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:160.
Base.show — Methodshow(io::IO, agent::DeepART.Agent)
Summary
Overload of the show function for Agent.
Arguments
io::IO: the current IO stream.cont::AbstractAgent: theAgentto print/display.
Method List / Definition Locations
show(io, agent)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:108.
Base.show — Methodshow(io::IO, ds::DeepART.ClassIncrementalDataSplit)
Summary
Overload of the show function for ClassIncrementalDataSplit.
Arguments
io::IO: the current IO stream.ds::ClassIncrementalDataSplit: theClassIncrementalDataSplitto print/display.
Method List / Definition Locations
show(io, ds)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:246.
Base.show — Methodshow(io::IO, ds::DeepART.DataSplit)
Summary
Overload of the show function for DataSplit.
Arguments
io::IO: the current IO stream.field::DataSplit: theDataSplitto print/display.
Method List / Definition Locations
show(io, ds)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:158.
Base.show — Methodshow(io::IO, field::DeepART.DeepHeadART)
Summary
Overload of the show function for DeepHeadART.
Arguments
io::IO: the current IO stream.field::DeepHeadART: theDeepHeadARTto print/display.
Method List / Definition Locations
show(io, field)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:517.
Base.show — Methodshow(io::IO, field::DeepART.DeeperART)
Summary
Overload of the show function for DeeperART.
Arguments
io::IO: the current IO stream.field::DeeperART: theDeeperARTto print/display.
Method List / Definition Locations
show(io, field)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeeperART.jl:109.
Base.show — Methodshow(io::IO, state::DeepART.EWCLossState)
Summary
Overload of the show function for EWCLossState.
Arguments
io::IO: the current IO stream.field::EWCLossState: theEWCLossStateto print/display.
Method List / Definition Locations
show(io, state)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWCLoss.jl:143.
Base.show — Methodshow(io::IO, state::DeepART.EWCState)
Summary
Overload of the show function for EWCState.
Arguments
io::IO: the current IO stream.field::EWCState: theEWCStateto print/display.
Method List / Definition Locations
show(io, state)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWC.jl:91.
Base.show — Methodshow(io::IO, cont::DeepART.ExperienceQueueContainer)
Summary
Overload of the show function for ExperienceQueueContainer.
Arguments
io::IO: the current IO stream.cont::ExperienceQueueContainer: theExperienceQueueContainerto print/display.
Method List / Definition Locations
show(io, cont)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:178.
Base.show — Methodshow(io::IO, state::DeepART.IEWCState)
Summary
Overload of the show function for IEWCState.
Arguments
io::IO: the current IO stream.field::IEWCState: theIEWCStateto print/display.
Method List / Definition Locations
show(io, state)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/IEWC.jl:92.
Base.show — Methodshow(io::IO, field::DeepART.MultiHeadField)
Summary
Overload of the show function for MultiHeadField.
Arguments
io::IO: the current IO stream.field::MultiHeadField: theMultiHeadFieldto print/display.
Method List / Definition Locations
show(io, field)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/MultiHeadField.jl:227.
Base.show — Methodshow(io::IO, l::DeepART.SingleFuzzy)
Summary
Pretty print definition for a SingleFuzzy layer.
Method List / Definition Locations
show(io, l)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Layers/FuzzyLayer.jl:66.
Base.show — Methodshow(io::IO, ds::DeepART.SupervisedDataset)
Summary
Overload of the show function for SupervisedDataset.
Arguments
io::IO: the current IO stream.field::SupervisedDataset: theSupervisedDatasetto print/display.
Method List / Definition Locations
show(io, ds)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:157.
DeepART.CC — MethodCC() -> typeof(DeepART.complement_code)
Summary
Constructs a complement coding layer as a simple complement coding function.
Method List / Definition Locations
CC()defined at /home/runner/work/DeepART/DeepART/src/lib/models/Layers/CCLayer.jl:13.
DeepART.CCConv — MethodCCConv() -> typeof(DeepART.complement_code_conv)
Summary
Constructs a complement coding layer as a simple function for convolutional layers.
Method List / Definition Locations
CCConv()defined at /home/runner/work/DeepART/DeepART/src/lib/models/Layers/CCLayer.jl:35.
DeepART.L2TaskIncrementalDataSplit — MethodL2TaskIncrementalDataSplit(
datasplit::DeepART.ClassIncrementalDataSplit,
groupings::Vector{Vector{Int64}};
shuffle
) -> Tuple{DeepART.ClassIncrementalDataSplit, Dict{String, Int64}}
Summary
Combines classes in the training and testing datasets of a ClassIncrementalDataSplit according to the provided groupings.
Arguments
datasplit::ClassIncrementalDataSplit: aClassIncrementalDataSplitto combine elements of according to the groupingsgroupings::Vector{Vector{Int}}: the set of groupings to perform.shuffle::Bool: flag for shuffling the data, default true.
Method List / Definition Locations
L2TaskIncrementalDataSplit(datasplit, groupings; shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:217.
DeepART.TaskIncrementalDataSplit — MethodTaskIncrementalDataSplit(
datasplit::DeepART.ClassIncrementalDataSplit,
groupings::Vector{Vector{Int64}};
shuffle
) -> DeepART.ClassIncrementalDataSplit
Summary
Combines classes in the training and testing datasets of a ClassIncrementalDataSplit according to the provided groupings.
Arguments
datasplit::ClassIncrementalDataSplit: aClassIncrementalDataSplitto combine elements of according to the groupingsgroupings::Vector{Vector{Int}}: the set of groupings to perform.shuffle::Bool: flag for shuffling the data, default true.
Method List / Definition Locations
TaskIncrementalDataSplit(datasplit, groupings; shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:192.
DeepART.W_norm — MethodW_norm(W::AbstractVector{T} where T<:Real) -> Any
Summary
Low-level common function for computing the 1-norm of just the weight vector.
Arguments
W::RealVector: the weight vector to use.
Method List / Definition Locations
W_norm(W)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:160.
DeepART.add_node! — Methodadd_node!(
art::DeepART.DeepHeadART,
x::AbstractArray{T} where T<:Real
)
Summary
Adds a node to the F2 layer of the DeepHeadART module.
Arguments
art::DeepHeadART: theDeepHeadARTmodule.x::RealArray: the input data.
Method List / Definition Locations
add_node!(art, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:228.
DeepART.add_node! — Methodadd_node!(field::DeepART.MultiHeadField)
Summary
Adds a node to the head of a MultiHeadField.
Arguments
field::MultiHeadField: theMultiHeadFieldobject.x::RealArray: the input data.
Method List / Definition Locations
add_node!(field)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/MultiHeadField.jl:182.
DeepART.art_learn_basic — Methodart_learn_basic(x, W, beta) -> Any
Summary
Basic FuzzyART learning rule.
Method List / Definition Locations
art_learn_basic(x, W, beta)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:58.
DeepART.art_learn_cast — Methodart_learn_cast(x, W, beta) -> Any
Summary
FuzzyART learning rule casting a vector input to a matrix of weights.
Method List / Definition Locations
art_learn_cast(x, W, beta)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:74.
DeepART.art_learn_head — Methodart_learn_head(xf, head, beta)
Summary
FuzzyART learning modification for networks using custom CC-SimpleFuzzy head layers.
Method List / Definition Locations
art_learn_head(xf, head, beta)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/INSTART.jl:243.
DeepART.basic_activation — Methodbasic_activation(
art::AdaptiveResonance.ARTModule,
x::AbstractVector{T} where T<:Real,
W::AbstractVector{T} where T<:Real
) -> Any
Summary
Simplified FuzzyARTMAP activation function.
Arguments
art::ARTModule: the ARTModule module.x::RealVector: the input sample vector to use.W::RealVector: the weight vector to use.
Method List / Definition Locations
basic_activation(art, x, W)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:179.
DeepART.basic_match — Methodbasic_match(
art::AdaptiveResonance.ARTModule,
x::AbstractVector{T} where T<:Real,
W::AbstractVector{T} where T<:Real
) -> Any
Summary
Basic match function.
Arguments
art::ARTModule: the ARTModule module.x::RealVector: the input sample vector to use.W::RealVector: the weight vector to use.
Method List / Definition Locations
basic_match(art, x, W)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:169.
DeepART.basic_test — Methodbasic_test(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
data::DeepART.SupervisedDataset;
display,
desc
) -> Vector{Int64}
Summary
Task-homogenous testing loop for a DeepARTModule model.
Arguments
art::CommonARTModule: theCommonARTModulemodel.n_test::Integer: the number of testing iterations.
Method List / Definition Locations
basic_test(art, data; display, desc)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:157.
DeepART.basic_train! — Methodbasic_train!(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
data::DeepART.SupervisedDataset;
display,
desc
) -> Vector{Int64}
Summary
Task-homogenous training loop for a DeepART model.
Arguments
art::CommonARTModule: theCommonARTModulemodel.data::DataSplit: aDataSplitcontainer of a supervised train/test split.n_train::Integer: the number of training iterations.
Method List / Definition Locations
basic_train!(art, data; display, desc)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:106.
DeepART.build_art_stats — Methodbuild_art_stats() -> Dict{String, Any}
Summary
Initializes an ARTStats dictionary with zero entries.
Method List / Definition Locations
build_art_stats()defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:14.
DeepART.class_incrementalize — Methodclass_incrementalize(
data::DeepART.SupervisedDataset
) -> Vector{DeepART.SupervisedDataset}
Summary
Turns a normal SupervisedDataset into a class-incremental vector of SupervisedDatasets.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.
Method List / Definition Locations
class_incrementalize(data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:61.
DeepART.complement_code — Methodcomplement_code(x) -> Any
Summary
Returns the complement code of the input
Method List / Definition Locations
complement_code(x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Layers/common.jl:28.
DeepART.complement_code_conv — Methodcomplement_code_conv(x) -> Any
Summary
Definition of the complement coding function for convolutional layers, which simply means that the channel layer (dims=3) is used for the complement coding.
Method List / Definition Locations
complement_code_conv(x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Layers/CCLayer.jl:24.
DeepART.config_dir — Methodconfig_dir(args...) -> String
Summary
Points to the configs directory.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
config_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:56.
DeepART.configs_dir — Methodconfigs_dir(args...) -> String
Summary
DrWatson-style configs results directory.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
configs_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:97.
DeepART.copy_stats! — Methodcopy_stats!(art::DeepART.ARTINSTART)
Summary
Copies the statistics from the head module to the top of the ARTINSTART module.
Method List / Definition Locations
copy_stats!(art)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/ARTINSTART.jl:167.
DeepART.create_complex_condensed_plot_alt — Functioncreate_complex_condensed_plot_alt(
perfs,
vals,
class_labels
) -> Tuple{Plots.Plot, Vector{Any}, Vector{Any}}
create_complex_condensed_plot_alt(
perfs,
vals,
class_labels,
percentages::Bool
) -> Tuple{Plots.Plot, Vector{Any}, Vector{Any}}
Summary
Create and return an alternate complex condensed scenario plot.
Method List / Definition Locations
create_complex_condensed_plot_alt(perfs, vals, class_labels)
create_complex_condensed_plot_alt(
perfs,
vals,
class_labels,
percentages
)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:379.
DeepART.create_confusion_heatmap — Methodcreate_confusion_heatmap(
class_labels::Vector{String},
y::AbstractVector{T} where T<:Integer,
y_hat::AbstractVector{T} where T<:Integer;
kwargs...
) -> Plots.Plot
Summary
Creates the confusion matrix as a heatmap using Plots.
Arguments
class_labels::Vector{String}: the string labels for the classes.y::IntegerVector: the class truth values.y_hat::IntegerVector: the class estimates.
Method List / Definition Locations
create_confusion_heatmap(class_labels, y, y_hat; kwargs...)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:143.
DeepART.create_custom_confusion_heatmap — Functioncreate_custom_confusion_heatmap(
class_labels::Vector{String},
norm_cm::AbstractMatrix{T} where T<:Real
) -> Plots.Plot
create_custom_confusion_heatmap(
class_labels::Vector{String},
norm_cm::AbstractMatrix{T} where T<:Real,
fontsize::Real
) -> Plots.Plot
Summary
Returns a handle to a labeled and annotated heatmap plot of the confusion matrix.
Arguments
norm_cm::RealMatrix: the normalized confuction matrix to plot as a heatmap.
Method List / Definition Locations
create_custom_confusion_heatmap(class_labels, norm_cm)
create_custom_confusion_heatmap(
class_labels,
norm_cm,
fontsize
)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:277.
DeepART.create_unicode_confusion_heatmap — Methodcreate_unicode_confusion_heatmap(
class_labels::Vector{String},
y::AbstractVector{T} where T<:Integer,
y_hat::AbstractVector{T} where T<:Integer;
kwargs...
) -> Union{UnicodePlots.Plot{T, Val{true}} where T<:UnicodePlots.HeatmapCanvas, UnicodePlots.Plot{T, Val{false}} where T<:UnicodePlots.HeatmapCanvas}
Summary
Makes and returns a unicode confusion heatmap for terminal viewing.
Method List / Definition Locations
create_unicode_confusion_heatmap(
class_labels,
y,
y_hat;
kwargs...
)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:110.
DeepART.data_dir — Methoddata_dir(args...) -> String
Summary
Points to the data directory.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
data_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:44.
DeepART.element_min — Methodelement_min(
x::AbstractVector{T} where T<:Real,
W::AbstractVector{T} where T<:Real
) -> Any
Summary
Returns the element-wise minimum between sample x and weight W.
Arguments
x::RealVector: the input sample.W::RealVector: the weight vector to compare the sample against.
Method List / Definition Locations
element_min(x, W)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:127.
DeepART.evaluate_agent! — Methodevaluate_agent!(
agent::DeepART.Agent,
experience::DeepART.Experience,
data::DeepART.ClassIncrementalDataSplit,
name_map::Dict{String, Int64}
) -> Dict
Summary
Evaluates a single agent on a single experience, training or testing as needed.
Arguments
agent::Agent: theAgentto evaluate.exp::Experience: theExperienceto use for training/testing.
Method List / Definition Locations
evaluate_agent!(agent, experience, data, name_map)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:165.
DeepART.fields_to_dict! — Methodfields_to_dict!(dict::AbstractDict, opts)
Summary
Adds entry to a dictionary from a struct with fields.
Meant to be used with StatsDict.
Arguments
dict::AbstractDict: theStatsDictdictionary to add entries to.opts::Any: a struct containing fields, presumably of options, to add as key-value entries to the dict.
Method List / Definition Locations
fields_to_dict!(dict, opts)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:208.
DeepART.flatten — Methodflatten(x::AbstractArray{T} where T<:Real) -> Any
Summary
Flattens a set of features to a 2D matrix.
Every dimension except the last is reshaped into the first dimension.
Arguments
x::AbstractFeatures: the array of features to flatten.
Method List / Definition Locations
flatten(x)defined at /home/runner/work/DeepART/DeepART/src/lib/data/common.jl:78.
DeepART.flatty — Methodflatty(data::DeepART.DataSplit) -> DeepART.DataSplit
Summary
Flattens a DataSplit.
Arguments
data::DataSplit: aDataSplitcontainer of a supervised train/test split.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
flatty(data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:118.
DeepART.flatty — Methodflatty(
data::DeepART.SupervisedDataset
) -> DeepART.SupervisedDataset
Summary
Flattens the feature dimensions of a SupervisedDataset.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
flatty(data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:111.
DeepART.flatty_hotty — Functionflatty_hotty(
data::DeepART.SupervisedDataset
) -> DeepART.SupervisedDataset{T, U} where {T<:(AbstractArray{T} where T<:Real), U<:OneHotArrays.OneHotArray}
flatty_hotty(
data::DeepART.SupervisedDataset,
n_class::Int64
) -> DeepART.SupervisedDataset{T, U} where {T<:(AbstractArray{T} where T<:Real), U<:OneHotArrays.OneHotArray}
Summary
Flattens the feature dimensions of a SupervisedDataset and one-hot encodes the labels.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
flatty_hotty(data)
flatty_hotty(data, n_class)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:130.
DeepART.flatty_hotty — Functionflatty_hotty(data::DeepART.DataSplit) -> DeepART.DataSplit
flatty_hotty(
data::DeepART.DataSplit,
n_class::Int64
) -> DeepART.DataSplit
Summary
Flattens and one-hot encodes a DataSplit.
Arguments
data::DataSplit: aDataSplitcontainer of a supervised train/test split.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
flatty_hotty(data)
flatty_hotty(data, n_class)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:136.
DeepART.flux_accuracy — Methodflux_accuracy(
y_hat::AbstractMatrix,
y_truth::AbstractMatrix,
n_class::Int64
) -> Any
Summary
Definition of testing accuracy for Flux.jl training loop logs.
Arguments
y_hat::AbstractMatrix: the predicted labels as a matrix.y_truth::AbstractMatrix: the true labels as a matrix.n_class::Int: the number of classes in the dataset.
Method List / Definition Locations
flux_accuracy(y_hat, y_truth, n_class)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:508.
DeepART.forward — Methodforward(
art::DeepART.DeepHeadART,
x::AbstractArray{T} where T<:Real
) -> Tuple{Any, Vector}
Summary
Forward pass for a DeepHeadART module.
Arguments
art::DeepHeadART: theDeepHeadARTmodule.x::RealArray: the input data.
Method List / Definition Locations
forward(art, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:184.
DeepART.forward — Methodforward(
field::DeepART.MultiHeadField,
x::AbstractArray{T} where T<:Real
) -> Vector
Summary
Computes the forward pass for a MultiHeadField.
Arguments
field::MultiHeadField: theMultiHeadFieldobject.x::RealArray: the input data.
Method List / Definition Locations
forward(field, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/MultiHeadField.jl:144.
DeepART.full_scenario — Methodfull_scenario(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
opts,
data::DeepART.ClassIncrementalDataSplit,
exp_dir::AbstractString,
l2logger,
d::AbstractDict
)
Summary
Runs a full scenario for a given dataset.
A CommonARTModule here needs to have:
- incrementalsupervisedtrain!(...)
- incremental_classify(...)
- stats["M"] and stats["T"] for ART match and activation.
Arguments
art::CommonARTModule: the ART module to use.opts: the options used to create the ART module.data::ClassIncrementalDataSplit: the data to use.exp_dir::AbstractString: the directory to containing the config and scenario files for each permutation.l2logger::PythonCall.Py: the l2logger Python library module, used for instantiating the specificDataLoggeritself here.
Method List / Definition Locations
full_scenario(art, opts, data, exp_dir, l2logger, d)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:324.
DeepART.gen_all_scenarios — Functiongen_all_scenarios(
datasets::Dict{String, DeepART.DataSplit},
groupings_dict::AbstractDict
)
gen_all_scenarios(
datasets::Dict{String, DeepART.DataSplit},
groupings_dict::AbstractDict,
n_max::Int64
)
Summary
Generates all scenarios.
Method List / Definition Locations
gen_all_scenarios(datasets, groupings_dict)
gen_all_scenarios(datasets, groupings_dict, n_max)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:470.
DeepART.gen_permutation_groupings — Functiongen_permutation_groupings(data::DeepART.DataSplit) -> Any
gen_permutation_groupings(
data::DeepART.DataSplit,
n_max::Int64
) -> Any
Summary
Generates all permutations of groupings in the dataset.
Method List / Definition Locations
gen_permutation_groupings(data)
gen_permutation_groupings(data, n_max)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:243.
DeepART.gen_random_groupings — Methodgen_random_groupings(
data::DeepART.DataSplit,
group_size::Int64,
n_groupings::Int64
) -> Vector{Vector{Vector{Int64}}}
Summary
Generates n_groupings random groupings of the dataset with group size group_size.
Method List / Definition Locations
gen_random_groupings(data, group_size, n_groupings)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:263.
DeepART.gen_scenario_from_group — Methodgen_scenario_from_group(
key::AbstractString,
cidata::DeepART.ClassIncrementalDataSplit,
order::Vector{Vector{Int64}}
)
Summary
Generates a single scenario according to a grouping.
Method List / Definition Locations
gen_scenario_from_group(key, cidata, order)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:310.
DeepART.gen_scenarios — Functiongen_scenarios(
key::AbstractString,
datasplit::DeepART.DataSplit,
grouping_dict::AbstractDict
)
gen_scenarios(
key::AbstractString,
datasplit::DeepART.DataSplit,
grouping_dict::AbstractDict,
n_max::Int64
)
Summary
Generates scenarios for one dataset.
Method List / Definition Locations
gen_scenarios(key, datasplit, grouping_dict)
gen_scenarios(key, datasplit, grouping_dict, n_max)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:442.
DeepART.get_EWC_loss — Methodget_EWC_loss(
state::DeepART.EWCLossState,
o::DeepART.EWCLossOpts,
x
) -> Any
Summary
Returns the EWC loss for the given state, options, and parameters.
Arguments
state::EWCLossState: the currentEWCLossState.o::EWCLossOpts: theEWCLossOptsfor the EWC method.x: the flat network parameters.
Method List / Definition Locations
get_EWC_loss(state, o, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWCLoss.jl:118.
DeepART.get_accuracies — Methodget_accuracies(
y::AbstractVector{T} where T<:Integer,
y_hat::AbstractVector{T} where T<:Integer,
n_classes::Integer
) -> Any
Summary
Get a list of the percentage accuracies.
Arguments
y::IntegerVector: the target values.y_hat::IntegerVector: the agent's estimates.n_classes::Integer: the number of total classes in the test set.
Method List / Definition Locations
get_accuracies(y, y_hat, n_classes)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:371.
DeepART.get_beta — Methodget_beta(
art::DeepART.DeepARTModule,
outs::AbstractArray{T} where T<:Real
) -> Any
Summary
Gets the local learning parameter.
Method List / Definition Locations
get_beta(art, outs)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:251.
DeepART.get_cifar10 — Methodget_cifar10(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the CIFAR10 dataset using MLDatasets.
Method List / Definition Locations
get_cifar10(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:192.
DeepART.get_cifar100_coarse — Methodget_cifar100_coarse(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the coarse CIFAR100 dataset using MLDatasets.
Method List / Definition Locations
get_cifar100_coarse(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:312.
DeepART.get_cifar100_fine — Methodget_cifar100_fine(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the fine CIFAR100 dataset using MLDatasets.
Method List / Definition Locations
get_cifar100_fine(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:254.
DeepART.get_confusion — Methodget_confusion(
y::AbstractVector{T} where T<:Integer,
y_hat::AbstractVector{T} where T<:Integer,
n_classes::Integer
) -> Matrix{Int64}
Summary
Wrapper method for getting the raw confusion matrix.
Arguments
y::IntegerVector: the target values.y_hat::IntegerVector: the agent's estimates.n_classes::Integer: the number of total classes in the test set.
Method List / Definition Locations
get_confusion(y, y_hat, n_classes)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:84.
DeepART.get_conv_model — Methodget_conv_model(size_tuple::Tuple) -> Any
Summary
Generates the feature extractor model for the ART network.
Arguments
size_tuple::Tuple{Int}: a tuple of the model input dimensions.
Method List / Definition Locations
get_conv_model(size_tuple)defined at /home/runner/work/DeepART/DeepART/src/lib/models/common.jl:103.
DeepART.get_data_subset — Methodget_data_subset(
data::DeepART.DataSplit;
n_train,
n_test
) -> DeepART.DataSplit
Summary
Gets a training and testing subset of the data from a DataSplit object.
Method List / Definition Locations
get_data_subset(data; n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:135.
DeepART.get_dense — Methodget_dense(n_neurons::Vector{Int64}) -> Flux.Chain
Summary
Creates a Flux.Chain of Flux.Dense layers according to the hidden layers DenseSpecifier.
Arguments
n_neurons::DenseSpecifier: theDenseSpecifierthat specifies the number of neurons per layer, including the input and output layers.
Method List / Definition Locations
get_dense(n_neurons)defined at /home/runner/work/DeepART/DeepART/src/lib/models/common.jl:71.
DeepART.get_dense_model — Methodget_dense_model(
size_tuple::Tuple
) -> Union{Flux.Chain{T} where T<:Tuple{Flux.Dense{typeof(NNlib.σ)}, Flux.Dense{typeof(NNlib.σ), Matrix{Float32}}, Flux.Dense{typeof(NNlib.σ), Matrix{Float32}}}, Flux.Chain{T} where T<:Tuple{Flux.Scale{typeof(NNlib.σ), A} where A<:(AbstractVector), Flux.Dense{typeof(NNlib.σ), Matrix{Float32}}, Flux.Dense{typeof(NNlib.σ), Matrix{Float32}}}}
Summary
Constructs a dense model.
Arguments
size_tuple::Tuple{Int}: a tuple of the model input dimensions.
Method List / Definition Locations
get_dense_model(size_tuple)defined at /home/runner/work/DeepART/DeepART/src/lib/models/common.jl:146.
DeepART.get_dist_grouping — Methodget_dist_grouping(
classes::Vector{Int64},
group_size::Int64
) -> Vector{Vector{Int64}}
Summary
Generates a new grouping from the classes vector and the group size, assuming that the length of the classes is evenly divisible by group_size.
Method List / Definition Locations
get_dist_grouping(classes, group_size)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/dist.jl:63.
DeepART.get_fashionmnist — Methodget_fashionmnist(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the FashionMNIST dataset using MLDatasets.
Method List / Definition Locations
get_fashionmnist(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:363.
DeepART.get_features — Methodget_features(
model::DeepART.SimpleDeepART,
x::AbstractArray{T} where T<:Real
) -> Any
Summary
Runs inference on the feature extractor of a SimpleDeepART model on a provided sample array.
Arguments
model::SimpleDeepART: theSimpleDeepARTmodel.x::RealArray: the sample to process with the deep model.
Method List / Definition Locations
get_features(model, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/SimpleDeepART/SimpleDeepART.jl:145.
DeepART.get_features — Methodget_features(
model::DeepART.SimpleDeepART,
data::DeepART.SupervisedDataset,
index::Integer
) -> Any
Summary
Runs inference on the SimpleDeepART model's feature extractor.
Arguments
model::SimpleDeepART: theSimpleDeepARTmodel.data::SupervisedDataset: theSupervisedDatasetdataset with the features to run inference on.index::Integer: the sample index to extract features of.
Method List / Definition Locations
get_features(model, data, index)defined at /home/runner/work/DeepART/DeepART/src/lib/models/SimpleDeepART/SimpleDeepART.jl:120.
DeepART.get_fuzzy_head — Functionget_fuzzy_head(
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code), Any}
get_fuzzy_head(head_dim::Integer, weights) -> Any
Summary
Constructs a FuzzyART head node with complement coding preprocessing.
Method List / Definition Locations
get_fuzzy_head(head_dim)
get_fuzzy_head(head_dim, weights)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/INSTART.jl:153.
DeepART.get_grouping — Methodget_grouping(
classes::Vector{Int64},
group_size::Int64
) -> Vector{Vector{Int64}}
Summary
Generates a new grouping from the classes vector and the group size, assuming that the length of the classes is evenly divisible by group_size.
Method List / Definition Locations
get_grouping(classes, group_size)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:219.
DeepART.get_head — Functionget_head(
opts
) -> Union{Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code), Any}, Flux.Chain{T} where T<:Tuple{typeof(identity), Any}}
get_head(opts, weights) -> Any
Summary
Constructs an INSTART head node.
Method List / Definition Locations
get_head(opts)
get_head(opts, weights)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/INSTART.jl:173.
DeepART.get_hypersphere_head — Functionget_hypersphere_head(
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(identity), Any}
get_hypersphere_head(head_dim::Integer, weights) -> Any
Summary
Constructs a HypersphereART head node.
Method List / Definition Locations
get_hypersphere_head(head_dim)
get_hypersphere_head(head_dim, weights)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/INSTART.jl:133.
DeepART.get_index_from_name — Methodget_index_from_name(
labels::Array{T<:AbstractString, 1},
name::AbstractString
) -> Any
Summary
Gets an integer index of where a string name appears in a list of strings.
Arguments
labels::Vector{T} where T <: AbstractString: the list of strings to search.name::AbstractString: the name to search for in the list of labels.
Method List / Definition Locations
get_index_from_name(labels, name)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:142.
DeepART.get_isr — Methodget_isr(; shuffle, p, dir) -> Tuple{String, String, Any}
Summary
Loads the Indoor Scene Recognition dataset from a local directory.
Method List / Definition Locations
get_isr(; shuffle, p, dir)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:577.
DeepART.get_isr_dir — Methodget_isr_dir() -> String
Summary
Points to the directory containing the Indoor Scene Recognition dataset depending on the host machine.
Method List / Definition Locations
get_isr_dir()defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:531.
DeepART.get_label — Methodget_label(
data::DeepART.SupervisedDataset,
index::Int64
) -> Any
Summary
Returns a supervised label from the SupervisedDataset at the provided index, accounting for one-hot labels.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.index::Int: the element index.
Method List / Definition Locations
get_label(data, index)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:81.
DeepART.get_last_f1 — Methodget_last_f1(a::Tuple) -> Any
Summary
Returns the last activation of the F1 layer.
Arguments
a::Tuple: the activations tuple.
Method List / Definition Locations
get_last_f1(a)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:335.
DeepART.get_last_f2 — Methodget_last_f2(a::Tuple) -> Any
Summary
Returns the last activations of the F2 layer.
Arguments
a::Tuple: the activations tuple.
Method List / Definition Locations
get_last_f2(a)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:345.
DeepART.get_loader — Methodget_loader(
art::AdaptiveResonance.ARTModule,
data::DeepART.SupervisedDataset
) -> MLUtils.DataLoader{_A, _B, _C, Val{nothing}, DeepART.SupervisedDataset{T, U}, Random.TaskLocalRNG} where {_A<:Union{MLUtils.BatchView, MLUtils.ObsView}, _B, _C, T<:(AbstractArray{T} where T<:Real), U<:(AbstractArray{T} where T<:Integer)}
Summary
Generates a data loader for a CommonARTModule training/testing loop.
Method List / Definition Locations
get_loader(art, data)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:53.
DeepART.get_loader — Methodget_loader(
art::DeepART.DeepARTModule,
data::DeepART.SupervisedDataset
) -> MLUtils.DataLoader{T, B, P, Val{nothing}, O, Random.TaskLocalRNG} where {T<:Union{MLUtils.BatchView, MLUtils.ObsView}, B, P, O}
Summary
Generates a data loader for a CommonARTModule training/testing loop.
Method List / Definition Locations
get_loader(art, data)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:66.
DeepART.get_mnist — Methodget_mnist(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the MNIST dataset using MLDatasets.
Method List / Definition Locations
get_mnist(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:149.
DeepART.get_module_from_options — Methodget_module_from_options(
d::AbstractDict,
data::DeepART.ClassIncrementalDataSplit
) -> Union{AdaptiveResonance.SFAM, DeepART.Hebb.BlockNet, DeepART.ARTINSTART, DeepART.Hebb.HebbModel}
Summary
Dispatcher for the ART module builders using a class-incremental split, build based upon from simply the first task.
Method List / Definition Locations
get_module_from_options(d, data)defined at /home/runner/work/DeepART/DeepART/src/lib/models/builders.jl:11.
DeepART.get_module_from_options — Methodget_module_from_options(
d::AbstractDict,
data::DeepART.SupervisedDataset
) -> Union{AdaptiveResonance.SFAM, DeepART.Hebb.BlockNet, DeepART.ARTINSTART, DeepART.Hebb.HebbModel}
Summary
Dispatcher for building ART modules from options and a supervised dataset.
Method List / Definition Locations
get_module_from_options(d, data)defined at /home/runner/work/DeepART/DeepART/src/lib/models/builders.jl:24.
DeepART.get_n — Methodget_n(n::Integer, data::DeepART.SupervisedDataset) -> Any
Summary
Helper function for making sure that the selected number of samples is within the bounds of the current dataset.
Arguments
n::Integer: the selected number of samples to train/test on.data::SupervisedDataset: the dataset to check against.
Method List / Definition Locations
get_n(n, data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/post-common.jl:28.
DeepART.get_normalized_confusion — Methodget_normalized_confusion(
y::AbstractVector{T} where T<:Integer,
y_hat::AbstractVector{T} where T<:Integer,
n_classes::Integer
) -> Matrix{Float64}
Summary
Get the normalized confusion matrix.
Arguments
y::IntegerVector: the target values.y_hat::IntegerVector: the agent's estimates.n_classes::Integer: the number of total classes in the test set.
Method List / Definition Locations
get_normalized_confusion(y, y_hat, n_classes)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:96.
DeepART.get_omniglot — Methodget_omniglot(
;
flatten,
gray,
n_train,
n_test
) -> DeepART.DataSplit
Summary
Loads the Omniglot dataset using MLDatasets.
Method List / Definition Locations
get_omniglot(; flatten, gray, n_train, n_test)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:406.
DeepART.get_perf — Methodget_perf(
data::DeepART.SupervisedDataset,
y_hats::Vector{Int64}
) -> Any
Summary
Computes the performance of the ART module given some estimates.
Method List / Definition Locations
get_perf(data, y_hats)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:230.
DeepART.get_rep_conv — Methodget_rep_conv(
size_tuple::Tuple,
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code_conv), Flux.Chain{T} where T<:Tuple{Any}, Flux.Chain{T} where T<:Tuple{Flux.MaxPool, typeof(DeepART.complement_code_conv)}, Flux.Chain{T} where T<:Tuple{Any}, Flux.Chain{T} where T<:Tuple{Flux.AdaptiveMaxPool, typeof(Flux.flatten), typeof(DeepART.complement_code)}, Flux.Chain{T} where T<:Tuple{Any, typeof(vec)}}
Summary
Constructs and returns the representative convolutional model for DeepARTModules.
Arguments
size_tuple::Tuple: the size of the input data for convolutions and batchs.head_dim::Integer: the dimension of the output head for the FuzzyARTMAP field.
Method List / Definition Locations
get_rep_conv(size_tuple, head_dim)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/representatives.jl:93.
DeepART.get_rep_dense — Methodget_rep_dense(
n_input::Integer,
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code), Any, typeof(DeepART.complement_code), Any, typeof(DeepART.complement_code), Any}
Summary
Constructs and returns the representative dense model for DeepARTModules.
Arguments
n_input::Integer: the size of the input data.head_dim::Integer: the dimension of the output head for the FuzzyARTMAP field.
Method List / Definition Locations
get_rep_dense(n_input, head_dim)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/representatives.jl:36.
DeepART.get_rep_fia_conv — Methodget_rep_fia_conv(
size_tuple::Tuple,
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code_conv), Flux.Chain{T} where T<:Tuple{Any}, Flux.Chain{T} where T<:Tuple{Flux.MaxPool, typeof(DeepART.complement_code_conv)}, Flux.Chain{T} where T<:Tuple{Any}, Flux.Chain{T} where T<:Tuple{Flux.AdaptiveMaxPool, typeof(Flux.flatten), typeof(DeepART.complement_code)}, Flux.Chain{T} where T<:Tuple{Any, typeof(vec)}}
Summary
Constructs and returns the representative convolutional model for DeepARTModules.
Arguments
size_tuple::Tuple: the size of the input data for convolutions and batchs.head_dim::Integer: the dimension of the output head for the FuzzyARTMAP field.
Method List / Definition Locations
get_rep_fia_conv(size_tuple, head_dim)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/representatives.jl:59.
DeepART.get_rep_fia_dense — Methodget_rep_fia_dense(
n_input::Integer,
head_dim::Integer
) -> Flux.Chain{T} where T<:Tuple{typeof(DeepART.complement_code), Any, typeof(DeepART.complement_code), Any}
Summary
Constructs and returns the representative dense model for DeepARTModules.
Arguments
n_input::Integer: the size of the input data.head_dim::Integer: the dimension of the output head for the FuzzyARTMAP field.
Method List / Definition Locations
get_rep_fia_dense(n_input, head_dim)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/representatives.jl:16.
DeepART.get_sample — Methodget_sample(mat::AbstractArray, index::Integer) -> Any
Summary
Sample getter for a matrix, determining convention depending on the array dimension.
Method List / Definition Locations
get_sample(mat, index)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:52.
DeepART.get_sample — Methodget_sample(
data::DeepART.SupervisedDataset,
index::Integer
) -> Any
Summary
Returns a feature sample from a SupervisedDataset at the provided index.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.index::Int: the element index.
Method List / Definition Locations
get_sample(data, index)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:70.
DeepART.get_weights — Methodget_weights(
model::DeepART.SimpleDeepART,
index::Integer
) -> Any
Summary
Returns the weights of a model at the layer index.
Arguments
model::SimpleDeepART: theSimpleDeepARTmodel.index::Integer: the layer index to return weights for.
Method List / Definition Locations
get_weights(model, index)defined at /home/runner/work/DeepART/DeepART/src/lib/models/SimpleDeepART/SimpleDeepART.jl:156.
DeepART.get_x_subset — Functionget_x_subset(x::AbstractArray) -> Any
get_x_subset(x::AbstractArray, n_samples::Integer) -> Any
Summary
Gets a subset of the dataset samples from the first index up to the number requested.
Method List / Definition Locations
get_x_subset(x)
get_x_subset(x, n_samples)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:38.
DeepART.get_y_subset — Functionget_y_subset(y::AbstractArray) -> Any
get_y_subset(y::AbstractArray, n_samples::Integer) -> Any
Summary
Gets a subset of the dataset labels from the first index up to the number requested.
Method List / Definition Locations
get_y_subset(y)
get_y_subset(y, n_samples)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:58.
DeepART.group_datasets — Functiongroup_datasets(
data::Vector{DeepART.SupervisedDataset},
group::Vector{Int64}
) -> DeepART.SupervisedDataset
group_datasets(
data::Vector{DeepART.SupervisedDataset},
group::Vector{Int64},
shuffle::Bool
) -> DeepART.SupervisedDataset
Summary
Returns a SupervisedDatasets that combines the datasets in a ClassIncrementalSupervisedDataset at the indices given by group.
Arguments
data::ClassIncrementalSupervisedDataset: the vector ofSupervisedDatasets to select and combine from.group::Vector{Int}: the indices to select from for combining.shuffle::Bool: flag for pairwise shuffling the dataset after it has been combined, default true.
Method List / Definition Locations
group_datasets(data, group)
group_datasets(data, group, shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:130.
DeepART.incremental_classify — Methodincremental_classify(
art::AdaptiveResonance.ARTModule,
x::AbstractArray{T} where T<:Real
) -> Any
Summary
Dispatch overload for the incremental classification with an ART.ARTModule.
Arguments
art::ART.ARTModule: the ART.ARTModule to use for classification.x::RealVector: the input sample vector to use.
Method List / Definition Locations
incremental_classify(art, x)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:104.
DeepART.incremental_classify — Methodincremental_classify(
art::DeepART.DeepARTModule,
x::AbstractArray{T} where T<:Real
) -> Any
Summary
Dispatch overload for the incremental classification with a DeepARTModule.
Arguments
art::DeepARTModule: theDeepARTModulemodel.x::RealVector: the input sample vector to use.
Method List / Definition Locations
incremental_classify(art, x)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:118.
DeepART.incremental_supervised_train! — Methodincremental_supervised_train!(
art::AdaptiveResonance.ART,
x::AbstractArray{T} where T<:Real,
y::Integer
) -> Any
Summary
Dispatch overload for incremental supervised training for an ART.ART module.
Arguments
art::ART.ART: the supervised ART.ART module.x::RealVector: the input sample vector to use.y::Integer: the label for the input sample.
Method List / Definition Locations
incremental_supervised_train!(art, x, y)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:20.
DeepART.incremental_supervised_train! — Methodincremental_supervised_train!(
art::AdaptiveResonance.ARTMAP,
x::AbstractArray{T} where T<:Real,
y::Integer
) -> Any
Summary
Dispatch overload for incremental supervised training for an ART.ARTMAP module.
Arguments
art::ART.ARTMAP: the supervised ART.ARTMAP module.x::RealVector: the input sample vector to use.y::Integer: the label for the input sample.
Method List / Definition Locations
incremental_supervised_train!(art, x, y)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:43.
DeepART.incremental_supervised_train! — Methodincremental_supervised_train!(
art::DeepART.DeepARTModule,
x::AbstractArray{T} where T<:Real,
y::Integer
) -> Any
Summary
Overload for incremental supervised training for a DeepARTModule model.
Arguments
art::DeepARTModule: theDeepARTModulemodel.x::RealVector: the input sample vector to use.y::Integer: the label for the input sample.
Method List / Definition Locations
incremental_supervised_train!(art, x, y)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:66.
incremental_supervised_train!(art, x, y)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/incremental.jl:82.
DeepART.initialize_exp_queue! — Methodinitialize_exp_queue!(
eqc::DeepART.ExperienceQueueContainer,
scenario_dict::AbstractDict
)
Summary
Initializes an ExperienceQueueContainer from the provided scenario dictionary.
Arguments
eqc::ExperienceQueueContainer: the container with the queue and stats to initialize.scenario_dict::AbstractDict: the dictionary with the scenario regimes and block types.
Method List / Definition Locations
initialize_exp_queue!(eqc, scenario_dict)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:56.
DeepART.instar — Methodinstar(
x::AbstractArray,
y::AbstractArray,
W::AbstractArray,
eta::Float64
) -> Any
Summary
Instar learning rule.
Arguments
x::RealVector: the input sample vector to use.W::RealVector: the weight vector to use.
,
eta::Float: learning rate.
Method List / Definition Locations
instar(x, y, W, eta)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:192.
DeepART.instar — Methodinstar(
x::AbstractArray{T} where T<:Real,
y::Tuple,
W::Flux.Chain,
eta::Float64
)
Summary
Method List / Definition Locations
instar(x, y, W, eta)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:216.
DeepART.is_complete — Methodis_complete(agent::DeepART.Agent) -> Bool
Summary
Checks if the Agent is done with its scenario queue.
Arguments
agent::Agent: the agent to test scenario completion on.
Method List / Definition Locations
is_complete(agent)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:129.
DeepART.json_load — Methodjson_load(filepath::AbstractString) -> Any
Summary
Loads the JSON file, interpreted as a dictionary.
Arguments
filepath::AbstractString: the full file name (with path) to load.
Method List / Definition Locations
json_load(filepath)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/common.jl:55.
DeepART.json_save — Methodjson_save(filepath::AbstractString, dict::AbstractDict)
Summary
Saves the dictionary to a JSON file.
Arguments
filepath::AbstractString: the full file name (with path) to save to.dict::AbstractDict: the dictionary to save to the file.
Method List / Definition Locations
json_save(filepath, dict)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/common.jl:42.
DeepART.learn! — Methodlearn!(
art::DeepART.DeepHeadART,
x::AbstractArray{T} where T<:Real,
f1a::Tuple,
f2a::Tuple,
index::Integer
)
Summary
Updates the weights of both the F1 layer and F2 layer (at the index) of the DeepHeadART module.
Arguments
art::DeepHeadART: theDeepHeadARTmodule.activations::Tuple: the activations tuple.index::Integer: the index of the node to update.
Method List / Definition Locations
learn!(art, x, f1a, f2a, index)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:245.
DeepART.learn_SimpleDeepART! — Methodlearn_SimpleDeepART!(
art::AdaptiveResonance.AbstractFuzzyART,
x::AbstractVector{T} where T<:Real,
index::Integer
) -> Any
Summary
In place learning function.
Arguments
art::AbstractFuzzyART: the FuzzyART module to update.x::RealVector: the sample to learn from.index::Integer: the index of the FuzzyART weight to update.
Method List / Definition Locations
learn_SimpleDeepART!(art, x, index)defined at /home/runner/work/DeepART/DeepART/src/lib/models/SimpleDeepART/SimpleDeepART.jl:281.
DeepART.learn_model — Methodlearn_model(
art::DeepART.DeepARTModule,
xf::AbstractArray{T} where T<:Real;
y
) -> Union{Tuple{}, Tuple{Any, Vararg{Any}}}
Summary
Weight update rule for the deep model component of a DeepARTModule.
Method List / Definition Locations
learn_model(art, xf; y)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/FIA.jl:183.
learn_model(art, xf; y)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:268.
DeepART.learn_model — Methodlearn_model(
art::DeepART.FIA,
xf::AbstractArray{T} where T<:Real;
y
) -> Union{Tuple{}, Tuple{Any, Vararg{Any}}}
Summary
Specific weight update rule for the deep model component of a FIA.
Method List / Definition Locations
learn_model(art, xf; y)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/FIA.jl:183.
DeepART.load_all_datasets — Functionload_all_datasets() -> Dict{String, DeepART.DataSplit}
load_all_datasets(
topdir::AbstractString
) -> Dict{String, DeepART.DataSplit}
load_all_datasets(
topdir::AbstractString,
shuffle::Bool
) -> Dict{String, DeepART.DataSplit}
load_all_datasets(
topdir::AbstractString,
shuffle::Bool,
p::Float64
) -> Dict{String, DeepART.DataSplit}
Summary
Loades the datasets from the data package experiment.
Arguments
topdir::AbstractString: defaultdata_dir("data-package"), the directory containing the CSV data package files.shuffle::Bool: flag for shuffling the data, default true.p::Float: kwarg, the split ratio ∈(0, 1), default 0.8.
Method List / Definition Locations
load_all_datasets()
load_all_datasets(topdir)
load_all_datasets(topdir, shuffle)
load_all_datasets(topdir, shuffle, p)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:756.
DeepART.load_data_package_dataset — Methodload_data_package_dataset(
name::AbstractString;
shuffle,
p
) -> DeepART.DataSplit
Summary
Loader function for the data package datasets.
Method List / Definition Locations
load_data_package_dataset(name; shuffle, p)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:711.
DeepART.load_dataset_file — Methodload_dataset_file(
filename::AbstractString
) -> Union{Tuple{Matrix, Matrix{AbstractString}}, Matrix}
Summary
Loads a dataset from a local file.
Arguments
filename::AbstractString: the location of the file to load with a default value.
Method List / Definition Locations
load_dataset_file(filename)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:631.
DeepART.load_one_dataset — Methodload_one_dataset(name::AbstractString; kwargs...) -> Any
Summary
Loads a single dataset by name, dispatching accordingly.
Arguments
name::AbstractString: the name of the dataset to load.args...: additional arguments to pass to the dataset loading function.
Method List / Definition Locations
load_one_dataset(name; kwargs...)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:736.
DeepART.load_sim_results — Methodload_sim_results(data_file::AbstractString, args...) -> Any
Summary
Wrapper for loading simulation results with arbitrarily many fields.
Arguments
data_file::AbstractString: the location of the datafile for loading.args...: the string names of the files to open.
Method List / Definition Locations
load_sim_results(data_file, args)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:248.
DeepART.log_art_stats! — Methodlog_art_stats!(
art::DeepART.DeepARTModule,
bmu::Integer,
mismatch::Bool
)
Summary
Logs common statistics of an ART module after a training/classification iteration.
Arguments
art::ARTModule: the ART module that just underwent training/classification.bmu::Integer: the best-matching unit integer index.mismatch::Bool: flag of whether there was a mismatch in this iteration.
Method List / Definition Locations
log_art_stats!(art, bmu, mismatch)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:36.
DeepART.log_data — Methodlog_data(
data_logger,
experience::DeepART.Experience,
results::Dict,
params::Dict;
status
) -> Any
Summary
Logs data from an L2 Experience.
Arguments
data_logger::PythonCall.Py: the l2logger DataLogger.exp::Experience: theExperiencethat theAbstractAgentjust processed.results::Dict: the results from theAbstractAgent'sExperience.status::AbstractString: string expressing if theExperiencewas processed.
Method List / Definition Locations
log_data(data_logger, experience, results, params; status)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:218.
DeepART.multi_activations — Methodmulti_activations(
art::DeepART.DeepHeadART,
x::AbstractArray{T} where T<:Real
) -> Tuple{Union{Tuple{}, Tuple{Any, Vararg{Any}}}, Tuple{Union{Tuple{}, Tuple{Any, Vararg{Any}}}, Vector}}
Summary
Forward pass for a DeepHeadART module with activations.
Arguments
art::DeepHeadART: theDeepHeadARTmodule.x::RealArray: the input data.
Method List / Definition Locations
multi_activations(art, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:205.
DeepART.multi_activations — Methodmulti_activations(
field::DeepART.MultiHeadField,
x::AbstractArray{T} where T<:Real
) -> Tuple{Union{Tuple{}, Tuple{Any, Vararg{Any}}}, Vector}
Summary
Computes the forward pass for a MultiHeadField and returns the activations of the shared and head layers.
Arguments
field::MultiHeadField: theMultiHeadFieldobject.x::RealArray: the input data.
Method List / Definition Locations
multi_activations(field, x)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/MultiHeadField.jl:162.
DeepART.n_classor — Functionn_classor(y::AbstractVector{T} where T<:Integer) -> Any
n_classor(
y::AbstractVector{T} where T<:Integer,
n_class::Int64
) -> Any
Summary
Returns the number of classes given a vector of labels.
If the number of classes is provided, that is used; otherwise, the number of classes is inferred from the labels.
Arguments
y::IntegerVector: the vector of integer labels.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
n_classor(y)
n_classor(y, n_class)defined at /home/runner/work/DeepART/DeepART/src/lib/data/common.jl:59.
DeepART.normalize_FIM — Methodnormalize_FIM(FIM) -> Any
Summary
Normalizes a Fisher Information Matrix (FIM).
Method List / Definition Locations
normalize_FIM(FIM)defined at /home/runner/work/DeepART/DeepART/src/lib/models/Optimisers/EWCLoss.jl:74.
DeepART.one_coldify — Methodone_coldify(y_hat::AbstractArray) -> Any
Summary
One-cold vector encoding of a one-hot encoded array.
Method List / Definition Locations
one_coldify(y_hat)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:496.
DeepART.one_hot — Functionone_hot(
y::AbstractVector{T} where T<:Integer
) -> OneHotArrays.OneHotArray
one_hot(
y::AbstractVector{T} where T<:Integer,
n_class::Int64
) -> OneHotArrays.OneHotArray
Summary
One-hot encodes the vector of labels into a matrix of ones.
Arguments
y::IntegerVector: the vector of integer labels.n_class::Int=0: the true number of classes (if known).
Method List / Definition Locations
one_hot(y)
one_hot(y, n_class)defined at /home/runner/work/DeepART/DeepART/src/lib/data/common.jl:101.
DeepART.order_to_string — Methodorder_to_string(order::Vector{Vector{Int64}}) -> String
Summary
Takes an ordering and returns the full string representation.
Method List / Definition Locations
order_to_string(order)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:281.
DeepART.order_to_task_strings — Methodorder_to_task_strings(
order::Vector{Vector{Int64}}
) -> Vector{String}
Summary
Takes an ordering and returns a vector of the string representations of individual tasks.
Method List / Definition Locations
order_to_task_strings(order)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:291.
DeepART.paper_results_dir — Methodpaper_results_dir(args...) -> String
Summary
DrWatson-style paper results directory.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
paper_results_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:68.
DeepART.percentage_formatter — FunctionInline formatter for percentages in plots.
DeepART.random_dist_grouping — Methodrandom_dist_grouping(
data::DeepART.DataSplit,
group_size::Int64
) -> Vector{Vector{Int64}}
Summary
Generates a random grouping from the provided dataset and selected group size.
Method List / Definition Locations
random_dist_grouping(data, group_size)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/dist.jl:74.
DeepART.random_grouping — Methodrandom_grouping(
data::DeepART.DataSplit,
group_size::Int64
) -> Vector{Vector{Int64}}
Summary
Generates a random grouping from the provided dataset and selected group size.
Method List / Definition Locations
random_grouping(data, group_size)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:230.
DeepART.results_dir — Methodresults_dir(args...) -> String
Summary
Points to the results directory.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
results_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:32.
DeepART.run_scenario — Methodrun_scenario(
agent::DeepART.Agent,
name_map,
data::DeepART.ClassIncrementalDataSplit,
data_logger,
d::AbstractDict
)
Summary
Runs an agent's scenario.
Arguments
agent::Agent: a struct that contains anAgentandscenario.data_logger::PythonCall.Py: a l2logger object.
Method List / Definition Locations
run_scenario(agent, name_map, data, data_logger, d)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/agents.jl:249.
DeepART.sanitize_block_type — Methodsanitize_block_type(block_type::AbstractString)
Summary
Sanitize the selected block type against the BLOCK_TYPES constant.
Arguments
block_type::AbstractString: the selected block type.
Method List / Definition Locations
sanitize_block_type(block_type)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/common.jl:81.
DeepART.sanitize_in_list — Methodsanitize_in_list(
selection_type::AbstractString,
selection,
acceptable::Array{T, 1}
)
Summary
Sanitizes a selection within a list of acceptable options.
Arguments
selection_type::AbstractString: a string describing the option in case it is misused.selection::Any: a single selection from a list.
Method List / Definition Locations
sanitize_in_list(selection_type, selection, acceptable)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/common.jl:66.
DeepART.sanitize_log_state — Methodsanitize_log_state(log_state::AbstractString)
Summary
Sanitize the selected log state against the LOG_STATES constant.
Arguments
log_state::AbstractString: the selected log state.
Method List / Definition Locations
sanitize_log_state(log_state)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/common.jl:92.
DeepART.save_sim — Methodsave_sim(
dir_func::Function,
d::AbstractDict,
fulld::AbstractDict
)
Summary
Common save function for simulations.
Arguments
Method List / Definition Locations
save_sim(dir_func, d, fulld)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/dist.jl:31.
DeepART.saveplot — Methodsaveplot(
p,
filename::AbstractString,
parts::Vector{String};
paper,
extension
)
Summary
Wrapper for saving results plots.
Method List / Definition Locations
saveplot(p, filename, parts; paper, extension)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:352.
DeepART.shuffle_pairs — Methodshuffle_pairs(
features::AbstractArray,
labels::AbstractArray
) -> Tuple{Any, Any}
Summary
Wrapper for shuffling features and their labels.
Arguments
features::AbstractArray: the set of data features.labels::AbstractArray: the set of labels corresponding to the features.
Method List / Definition Locations
shuffle_pairs(features, labels)defined at /home/runner/work/DeepART/DeepART/src/lib/data/common.jl:39.
DeepART.string_to_orders — Methodstring_to_orders(order_string::AbstractString) -> Vector
Summary
Takes a string ordering and gets back the integer ordering.
Method List / Definition Locations
string_to_orders(order_string)defined at /home/runner/work/DeepART/DeepART/src/lib/l2/scenario.jl:301.
DeepART.supervised_train! — Functionsupervised_train!(
model::DeepART.SimpleDeepART,
data::DeepART.SupervisedDataset
)
supervised_train!(
model::DeepART.SimpleDeepART,
data::DeepART.SupervisedDataset,
n_train::Integer
)
Summary
Runs the supervised training of a SimpleDeepART module.
Arguments
model::SimpleDeepART: theSimpleDeepARTmodel.data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.n_train::Integer: the upper-bound of number of samples to train, default 0.
If this is not manually set, all samples are trained upon.
Method List / Definition Locations
supervised_train!(model, data)
supervised_train!(model, data, n_train)defined at /home/runner/work/DeepART/DeepART/src/lib/models/SimpleDeepART/SimpleDeepART.jl:189.
DeepART.task_incrementalize — Functiontask_incrementalize(
data::Vector{DeepART.SupervisedDataset},
groupings::Vector{Vector{Int64}}
) -> Vector{DeepART.SupervisedDataset}
task_incrementalize(
data::Vector{DeepART.SupervisedDataset},
groupings::Vector{Vector{Int64}},
shuffle::Bool
) -> Vector{DeepART.SupervisedDataset}
Summary
Groups multiple datasets within a ClassIncrementalSupervisedDataset according to a vector of groupings.
Arguments
data:ClassIncrementalSupervisedDataset: the vector of datasets to group.groupings::Vector{Vector{Int}}: the set of groupings to perform.shuffle::Bool: flag for shuffling the data, default true.
Method List / Definition Locations
task_incrementalize(data, groupings)
task_incrementalize(data, groupings, shuffle)defined at /home/runner/work/DeepART/DeepART/src/lib/data/ClassIncrementalDataSplit.jl:169.
DeepART.tensorize_dataset — Methodtensorize_dataset(
data::DeepART.SupervisedDataset
) -> DeepART.SupervisedDataset
Summary
Turns the features of a dataset into a tensor.
Arguments
data::SupervisedDataset: aSupervisedDatasetcontaining samples and their labels.
Method List / Definition Locations
tensorize_dataset(data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/SupervisedDataset.jl:95.
DeepART.tensorize_datasplit — Methodtensorize_datasplit(
data::DeepART.DataSplit
) -> DeepART.DataSplit
Summary
Tensorizes both the training and testing components of a DataSplit.
Arguments
data::DataSplit: aDataSplitcontainer of a supervised train/test split.
Method List / Definition Locations
tensorize_datasplit(data)defined at /home/runner/work/DeepART/DeepART/src/lib/data/DataSplit.jl:103.
DeepART.term_accuracy — Methodterm_accuracy(
accs::Array{T<:Real, 1}
) -> Union{UnicodePlots.Plot{T, Val{true}} where T<:UnicodePlots.BrailleCanvas, UnicodePlots.Plot{T, Val{false}} where T<:UnicodePlots.BrailleCanvas}
Summary
Terminal plot function for a simple vector of accuracies.
Method List / Definition Locations
term_accuracy(accs)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:14.
DeepART.term_preds — Methodterm_preds(
y_hats::Vector{Int64};
title
) -> UnicodePlots.Plot{T, Val{_A}} where {T<:(UnicodePlots.BarplotGraphics{Int64}), _A}
Summary
Terminal barplot function for category predictions.
Method List / Definition Locations
term_preds(y_hats; title)defined at /home/runner/work/DeepART/DeepART/src/lib/plots.jl:33.
DeepART.text_targets_to_ints — Methodtext_targets_to_ints(
targets::Vector{String}
) -> Vector{Int64}
Summary
Converts a vector of string targets to a vector of integer targets using a target map.
Arguments
targets::Vector{String}: the vector of string targets to convert.target_map::Dict{String, Int}: the mapping of string targets to integer targets.
Method List / Definition Locations
text_targets_to_ints(targets)defined at /home/runner/work/DeepART/DeepART/src/lib/data/data.jl:22.
DeepART.train! — Methodtrain!(
art::DeepART.DeepHeadART,
x::AbstractArray{T} where T<:Real;
y
) -> Any
Summary
Trains the DeepHeadART module on the provided sample x.
Arguments
art::DeepHeadART: theDeepHeadARTmodule.x::RealArray: the input data.
Method List / Definition Locations
train!(art, x; y)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/DeepHeadART.jl:356.
DeepART.train_inc! — Methodtrain_inc!(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
tidata::DeepART.ClassIncrementalDataSplit;
display,
desc
) -> Vector{Vector{Int64}}
Summary
Task-incremental training/testing loop.
Arguments
art::DeepARTModule: theDeepARTModulemodel.tidata::ClassIncrementalDataSplit: the task-incremental data split.n_train::Integer: the number of training iterations.
Method List / Definition Locations
train_inc!(art, tidata; display, desc)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:200.
DeepART.train_test! — Methodtrain_test!(
data::DeepART.DataSplit,
opts::Dict
) -> Vector{Any}
Summary
Simple train/test split experiment using an MLP with gradient descent on the datset.
Method List / Definition Locations
train_test!(data, opts)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:532.
DeepART.tt_basic! — Methodtt_basic!(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
data::DeepART.DataSplit;
display,
epochs
) -> Dict
Summary
Single-task training/testing loop.
Arguments
art::CommonARTModule: theCommonARTModulemodel.data::DataSplit: aDataSplitcontainer of a supervised train/test split.n_train::Integer: the number of training iterations.n_test::Integer: the number of testing iterations.
Method List / Definition Locations
tt_basic!(art, data; display, epochs)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:266.
DeepART.tt_dist — Methodtt_dist(d::AbstractDict, dir_func::Function; rerun)
Summary
Trains and classifies a START module on the provided statements.
Arguments
Method List / Definition Locations
tt_dist(d, dir_func; rerun)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/dist.jl:90.
DeepART.tt_inc! — Methodtt_inc!(
art::Union{AdaptiveResonance.ARTModule, DeepART.DeepARTModule, DeepART.Hebb.BlockNet, DeepART.Hebb.HebbModel},
tidata::DeepART.ClassIncrementalDataSplit,
data::DeepART.DataSplit;
display
) -> Dict
Summary
Multi-task training/testing loop for DeepARTModules.
Arguments
art::DeepARTModule: theDeepARTModulemodel.tidata::ClassIncrementalDataSplit: the task-incremental data split.data::DataSplit: aDataSplitcontainer of a supervised train/test split.n_train::Integer: the number of training iterations.n_test::Integer: the number of testing iterations.
Method List / Definition Locations
tt_inc!(art, tidata, data; display)defined at /home/runner/work/DeepART/DeepART/src/lib/experiments/train-test.jl:331.
DeepART.work_dir — Methodwork_dir(args...) -> String
Summary
Points to the work directory containing raw datasets, processed datasets, and results.
Arguments
args...: the string directories to append to the directory.
Method List / Definition Locations
work_dir(args)defined at /home/runner/work/DeepART/DeepART/src/lib/drwatson.jl:20.
DeepART.x_W_min_norm — Methodx_W_min_norm(
x::AbstractVector{T} where T<:Real,
W::AbstractVector{T} where T<:Real
) -> Any
Summary
Low-level common function for computing the 1-norm of the element minimum of a sample and weights.
Arguments
x::RealVector: the input sample vector to use.W::RealVector: the weight vector to use.
Method List / Definition Locations
x_W_min_norm(x, W)defined at /home/runner/work/DeepART/DeepART/src/lib/models/DeepART/common.jl:149.