Index
This page lists the core functions and types of the Julia component of the Rocketeer.jl package.
"Table" of Contents
| Modules | Functions | Types | Constants |
|---|---|---|---|
| Index | Index | Index | Index |
| Docs | Docs | Docs | Docs |
Index
This section enumerates the names exported by the package, each of which links to its corresponding Documentation.
Modules
Functions
Types
Constants
Docs
This section lists the documentation for every exported name of the Rocketeer package.
Modules
Rocketeer.Rocketeer — ModuleMain module for the Rocketeer.jl package.
Attribution
Programmer
- Sasha Petrenko <petrenkos@mst.edu> @AP6YC
Original Authors
- Angus Dempster
- Francois Petitjean
- Geoff Webb
Bibtex Entry
@article{dempster_etal_2020,
author = {Dempster, Angus and Petitjean, Francois and Webb, Geoffrey I},
title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
year = {2020},
journal = {Data Mining and Knowledge Discovery},
doi = {https://doi.org/10.1007/s10618-020-00701-z}
}Citation Links
- Papers:
- Software
- rocket (Python)
Imports
The following names are imported by the package as dependencies:
BaseCoreDocStringExtensionsNumericalTypeAliasesPkgRandom
Exports
The following names are exported and available when using the package:
Functions
Rocketeer.apply_kernel — Methodapply_kernel(
kernel::RocketKernel,
x::AbstractVector{T} where T<:Real
) -> Any
Summary
Apply a single RocketKernel to the sequence x.
Arguments
kernel::RocketKernel: theRocketKernelused for computing features.x::RealVector: data sequence for computing Rocket features.
Method List / Definition Locations
apply_kernel(kernel, x)defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:136.
Rocketeer.apply_kernels — Methodapply_kernels(
rocket::RocketModule,
x::AbstractVector{T} where T<:Real
) -> Matrix{Float64}
Summary
Run a vector of RocketKernels along a sequence x.
Arguments
rocket::RocketModule: rocket module containing many kernels for processing.x::RealVector: data sequence for computing rocket features.
Method List / Definition Locations
apply_kernels(rocket, x)defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:173.
Rocketeer.load_rocket — Functionload_rocket() -> Any
load_rocket(filepath::AbstractString) -> Any
Summary
Load and return a RocketModule with existing parameters from a .jld2 file.
Arguments
filepath::AbstractString: defaultrocket.jld2, path to the.jld2containing rocket parameters.
Method List / Definition Locations
load_rocket()
load_rocket(filepath)defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:210.
Rocketeer.save_rocket — Functionsave_rocket(rocket::RocketModule)
save_rocket(rocket::RocketModule, filepath::AbstractString)
Summary
Save the RocketModule parameters to a .jld2 file.
Arguments
rocket::RocketModule: theRocketModuleto save.filepath::AbstractString: defaultrocket.jld2, path to.jld2for saving rocket parameters.
Method List / Definition Locations
save_rocket(rocket)
save_rocket(rocket, filepath)defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:196.
Types
Rocketeer.RocketKernel — Typestruct RocketKernelSummary
Structure containing information about one Rocket kernel.
Attribution
Programmer
- Sasha Petrenko <petrenkos@mst.edu> @AP6YC
Original Authors
- Angus Dempster
- Francois Petitjean
- Geoff Webb
Bibtex Entry
@article{dempster_etal_2020,
author = {Dempster, Angus and Petitjean, Francois and Webb, Geoffrey I},
title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
year = {2020},
journal = {Data Mining and Knowledge Discovery},
doi = {https://doi.org/10.1007/s10618-020-00701-z}
}Citation Links
- Papers:
- Software
- rocket (Python)
Fields
length::Int64: The length of the kernel.
weight::Vector{Float64}: The vector of weights corresponding to the features.
bias::Float64: The internal Rocket bias parameter, computed during construction.
dilation::Int64: The internal Rocket dilation parameter, computed during construction.
padding::Int64: The internal Rocket padding parameter, computed during construction.
Rocketeer.RocketModule — Typestruct RocketModuleSummary
Structure containing a vector of RocketKernels.
Attribution
Programmer
- Sasha Petrenko <petrenkos@mst.edu> @AP6YC
Original Authors
- Angus Dempster
- Francois Petitjean
- Geoff Webb
Bibtex Entry
@article{dempster_etal_2020,
author = {Dempster, Angus and Petitjean, Francois and Webb, Geoffrey I},
title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
year = {2020},
journal = {Data Mining and Knowledge Discovery},
doi = {https://doi.org/10.1007/s10618-020-00701-z}
}Citation Links
- Papers:
- Software
- rocket (Python)
Fields
input_length::Int64: The input length used to generate theRocketKernels.
kernels::Vector{RocketKernel}: The list ofRocketKernels constituting a full Rocket module.
Rocketeer.RocketModule — MethodRocketModule(
input_length::Integer,
n_kernels::Integer
) -> RocketModule
Summary
Create a new RocketModule structure, requiring feature length and the number of kernels.
Arguments
input_length::Integer: the desired length of the kernel features.n_kernels::Integer: the desired number of kernels to generate.
Attribution
Programmer
- Sasha Petrenko <petrenkos@mst.edu> @AP6YC
Original Authors
- Angus Dempster
- Francois Petitjean
- Geoff Webb
Bibtex Entry
@article{dempster_etal_2020,
author = {Dempster, Angus and Petitjean, Francois and Webb, Geoffrey I},
title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
year = {2020},
journal = {Data Mining and Knowledge Discovery},
doi = {https://doi.org/10.1007/s10618-020-00701-z}
}Citation Links
- Papers:
- Software
- rocket (Python)
Method List / Definition Locations
RocketModule(input_length, n_kernels)defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:74.
Rocketeer.RocketModule — MethodRocketModule() -> RocketModule
Summary
Empty constructor for a RocketModule.
This uses the default values input_length=5 and n_kernels=100.
Attribution
Programmer
- Sasha Petrenko <petrenkos@mst.edu> @AP6YC
Original Authors
- Angus Dempster
- Francois Petitjean
- Geoff Webb
Bibtex Entry
@article{dempster_etal_2020,
author = {Dempster, Angus and Petitjean, Francois and Webb, Geoffrey I},
title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
year = {2020},
journal = {Data Mining and Knowledge Discovery},
doi = {https://doi.org/10.1007/s10618-020-00701-z}
}Citation Links
- Papers:
- Software
- rocket (Python)
Method List / Definition Locations
RocketModule()defined at /home/runner/work/Rocketeer.jl/Rocketeer.jl/src/lib/rocket.jl:117.
Constants
Rocketeer.ROCKETEER_VERSION — ConstantA constant that contains the version of the installed Rocketeer.jl package.
This value is computed at compile time, so it may be used to programmatically verify the version of OAR that is installed in case a compat entry in your Project.toml is missing or otherwise incorrect.