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Executive Summary

Papers

• DeepART - ART + Deep Local
Learning

• START - ART + Symbols/Graphs

• DFCCR - ART + Deep Feature
Clustering

Themes

• Combining Deep Learning and Adaptive
Resonance Theory

• Adaptive Resonance Algorithms for
Lifelong Machine Learning

• Novel Adaptive Resonance Algorithms
and Architectures
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Deep Learning and L2
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L2 Diagram
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Catastrophic Forgetting and L2

L2

• Brute force insufficient

◦ Real world is nonstationary, real
engineered systems

◦ Energy cost
◦ Transferrability and democratization

• New model considerations

◦ Add new classes?
◦ Regularize?
◦ Learning scenarios?

Catastrophic Forgetting

• Shared basis f∗(ϕ(x))

• Nonstationary data

◦ New classes
◦ Shift in previous classes

• Stability-plasticity dilemma

◦ Stable enough to retain previous
knowledge

◦ Plastic enough to learn new
knowledge
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McCulloch-Pitts Neuron

Problems

• Want to become pattern/feature
detector/filter

• ...but which pattern?

◦ Random starting weights?
◦ Uniqueness with respect to neighbors?
◦ What if it is a moving target?

• ...and how?

1. Someone tells me how to change
2. I figure it out myself
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Multiple Neurons

Problems

• Deep Learning: Patterns of filters are
useful as inputs for other filters

• We don’t want to converge on the
same filter pattern

1. Prescribed Order: Weight assigning
“oracle” knows each role

2. Natural Order: Competition,
“might-makes-right”, “who gets to
learn, and how much”?

• Interference and stability
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Adaptive Resonance
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Adaptive Resonance

Optimal Assignment

• Stability-plasticity dilemma addressed
through winner-take-all (WTA)
competitive learning dynamics [1]

• Steady-state analysis of recurrent
networks realizes activation (T ) and
match (M) functions, vigilance
criterion, and WTA learning rule.

• Fuzzy combination x ∧w rather than
inner product x ·w

xi,j

xi+1,j
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FuzzyART: Visualized

F0

F0(x) = [1̄− x,x]

F1

F1(F0(x)) = Tj =
∥x ∧wj∥1
α+ ∥wj∥1

F2

F2(F1(F0(x))) = MJ =
∥x ∧wJ∥1
∥x∥1

ρ
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stART: Overview

Overview

• Analyzing Biomedical Datasets with
Symbolic Tree Adaptive Resonance
Theory

• MDPI Information - Grossberg Special
Issue

• Paper and Supplementary Materials:

◦ MDPI Information (Open):
https://www.mdpi.com/

2078-2489/15/3/125

◦ IEEE TechRxiv Preprint DOI:
10.36227/techrxiv.24542782
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stART

Figure 1: stART Biomedical Dataset: 81
Charcot-Marie-Tooth phylogenetic variants Figure 2: stART EBNF grammar production

rules example
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stART

Figure 3: stART Relation Parse Syntax Trees
for x+ y.

Figure 4: stART Statements and Prototypes for
pretrained x+ y prototype updated with
x+m · n

Petrenko DeepART 18 / 57
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stART

Algorithms

• stART: Symbolic Tree Adaptive
Resonance Theory

• Six variants:

◦ stART, Dual-Vigilance stART,
Distrubuted Dual-Vigilance stART

◦ Supervised modification (Lifelong
Context Recognition)

Figure 5: stART Algorithm
Petrenko DeepART 19 / 57
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stART

Figure 6: stART Parameter Sweep

Figure 7: stART SHAP Analysis
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Lifelong Context Recognition: Overview

Overview

1. Lifelong Context Recognition via Deep
Feature Clustering

2. Components

(a) ARTSCENE [2]
(b) YOLOv10 [3]
(c) DDVFA [4]
(d) Simplified FuzzyARTMAP [5]

Petrenko DeepART 22 / 57



Overview L2 ART START DFCCA DeepART Background Derivation Experiments Conclusion Conclusion

ARTSCENE: Gist
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ARTSCENE: Architecture

Figure 8: Supervised Scene
Learning

Figure 9: Inference

Figure 10: Default ARTMAP 2
[6]
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ARTSCENE: Filters

Stages

1. Color-to-gray image transformation

2. Contrast normalization

3. Contrast-sensitive oriented filtering

4. Contrast-insensitive oriented filtering

5. Oriented competition at the same
position

6. Gist feature vector

7. Attentional shrouds

Oπg
k =

1

|π|
∑

(i,j)∈π

Zg
ijk

Cπω =
1

|π|
∑

(p,q)∈π

Iωp,q

G =

(
Oπg

k∑4
ℓ=1O

πg
ℓ

,
Cπω∑

v∈{R,G,B}C
πv

:

k ∈ {1, 2, 3, 4};
ω ∈ {R,G,B};

π ∈ {1, . . . , 16}

)
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ARTSCENE: Filters
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Method

Experimental Method

• Multi-modal deep feature clustering approach

• AirSim: Custom environment, assets, simulate multiple
flight paths

• Extract full mid-layer activations with pretrained
YOLOv10

◦ Multi-object classifier
◦ Deep CNN

• Compute average activations along pixel dimensions

• Z-score feature statistics on training dataset

• Normalize, sigmoid, DDVFA clustering

• Modulated, label-mapped Simplified FuzzyARTMAP
module for supervised

Petrenko DeepART 27 / 57
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Method

Experiments

1. Randomized Sampling: full shuffle, train/test

2. Lifelong Learning Condensed Scenario Permutations:
(a) Train T1, test T1, train T2, test T1 and T2, train T3, etc.
(b) Permute (6! = 720)

3. Semi-Supervised Training: Train 80% supervised, train 20% unsupervised

Petrenko DeepART 28 / 57
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Results: Monte Carlo

Figure 11: Shuffled Samples
Performance

Figure 12: Permuted Contexts
Performance

Figure 13: Semi-Supervised
Performance
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Results: Single L2 Condensed Scenario

Figure 14: A single lifelong learning scenario of alternating training and testing blocks. Gray areas are
Experience Blocks (EBs), where performance is tested for each class. White areas denote Learning Blocks (LBs).
Solid curves during learning blocks indicate learning validation results during training. Dotted lines interpolated
between EBs indicate the global trends of performance per class as new classes are sequentially introduced
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DeepART

Overview

• Deep Adaptive Resonance

• Combining deep learning and ART

• Challenges:

◦ Deep learning is model of
architectures, not necessarily learning
rules (i.e. gradient descent with
backpropagation, loss penalties such
as EWC)

◦ Deep Hebbian literature

Petrenko DeepART 32 / 57
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Problem Statement

Problems
• Catastrophic forgetting

• Stability-plasticity dilemma

• Deep loss landscape fragility

• Non-local learning with gradients

• ART optimal category learning, assuming
a stable, complete feature space

Objectives
• Manifold learning from deep architectures

• Lifelong learning

◦ Performance maintenance
◦ Forward transfer
◦ Backward transfer

• Combine ART with feature learning

Deep Hebbian Learning
• No gradients

• Local learning

• ∆w = f(x,w, y)

• Incremental learning

Adaptive Resonance Theory
• Prototype-based

• WTA learning

• Neurogenesis

• Incremental learning

Petrenko DeepART 33 / 57
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Problem Statement

Distillation

1. Multi-layer, function-composed ART algorithm

2. MLP and CNN derivations

3. Supervised modification

4. Stability/convergence criterion

Petrenko DeepART 34 / 57
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Learning Rules

Backpropagation

∆wij = −η
δe

δwij

e = L (t, y)

• Pros:

1. Statistical/optimization guarantees

• Cons:

1. Unexplainable
2. Data/energy inefficient

Hebbian

∆wij = f (yj ,xij,wij)

1. Pros:

◦ Explainable

2. Cons:

◦ Weight instability
◦ Limited research with deep networks

Petrenko DeepART 36 / 57
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Local Learning Rules

Notation

yij = wijxj

zij = ϕ (wijxj)

• i: layer index, n layers

• j: neuron index, m neurons

• yij : neuron output

• tij : neuron target

• wij : weight vector

• xj : input vector

• ϕ: (nonlinear) transfer function

Rule ∆w

Unsupervised

Hebb’s ηyx
Oja’s η · y (x− yw)
Instar η · y (x−w)

Supervised

Widrow-Hoff η (t− y)x

Table 1: Local neuron update rules. Shorthand:
y = yij , x = xj , w = wij

Petrenko DeepART 37 / 57
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Local Learning Rules

What about η?

• Varying η learning rules

• η = β in ART literature

• DeepART revelation:

1. Each category gets a different feature
vector x

2. Each category shares the same feature
vector x but compete at the level of β

Rule
βj

j = J j ̸= J

WTA 1 0
SOM 1 hJj

Softmax σ (y) σ (y)
Contrast 1 −σ (y)

Table 2: Local neuron learning rate rules.

Petrenko DeepART 38 / 57
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Learning Rule Derivation

Derivation

Hebb ∆w = ηyx (1)

Layer ∆W = ηyxT (2)

Decay ∆w = ηyx− γ (3)

Decay Ratio γ = ηyw (4)

Instar ∆w = ηy (x− w) (5)

FuzzyART

Activation Tj =
∥x ∧wj∥1
α+ ∥wj∥1

(6)

Match MJ =
∥y(F1)∥1
∥x∥1

=
∥x ∧wJ∥1
∥x∥1

(7)

Update wJ ← (1− β)wJ + β(x ∧w) (8)

Delta Rule ∆wJ = β ((x ∧wJ)−wJ) (9)

Petrenko DeepART 40 / 57
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Modifications

Forward xi = CC (yi−1) (10)

= CC (ϕ (Zi (∥xi−1 ∧wi,j∥1)))
(11)

Sigmoid ϕ(z) =
1

1 + e−z
(12)

Update ∆wi,J = βi,J ((xi ∧wi,J)−wi,J) (13)

Learn Rate βi,J = βd
√
mi (14)

Convolution xi = CC (ϕ (Zi (Wi−1∗̂xi−1)))
(15)

Supervised Component

Option 1: FuzzyARTMAP

• Feature - category - label map

Option 2: Leader Neuron

Target: 1ω (j) =

{
1 if yL,j = ω

0 if yL,j ̸= ω

(16)

Widrow-Hoff:∆w = η (t− y)x
(17)

Petrenko DeepART 41 / 57
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Algorithm

DeepART

• Deep, nonlinear function-composed hierarchical model

• Alternating normalization (F0), complement-coding (F1), and competition layers (F2)

• Local weight update rule, no gradients

• Default unsupervised, FuzzyARTMAP head supervised

• Feedforward MLP and CNN variations

xi [x,
−→
1 − x]

CC

∥x ∧Wi∥1

M(x,w)

J = argmax(M)
wJ ← β(x ∧wJ)− (1− β)wJ

WTA

M ∼ N (0, 1)

LayerNorm

ϕ(z) = 1
1+e−z

ϕ

xi+1

Petrenko DeepART 42 / 57
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Stability

Convergence Criterion

• Cohen-Grossberg theorem for shunting
network component

• ART1, FuzzyART: winning activation
monotonically increases

• Hypothesis:

◦ Monotonic decrease in Mi,J effect
nullified by normalization

◦ Filter specialization and stability
driven by convergence to fuzzy
subset of initial weights

xi ← [1− xi,xi] (18)

Mi,J =
∥xi ∧wi,J∥1
∥xi∥1

(19)

=
∥xi ∧wi,J∥1

2di
(20)

∆wi,J = βi,J ((xi ∧wi,J)−wi,J) (21)

dMi,J

d∆wi,J
≤ 0 (22)
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Experimental Setup

Dataset Feature Dimension # Train # Test # Total # Classes # Tasks × # Classes per Task

MNIST 28 × 28 × 1 60, 000 10, 000 70, 000 10 5 × 2
Fashion MNIST 28 × 28 × 1 60, 000 10, 000 70, 000 10 5 × 2

CIFAR-10 32 × 32 × 3 50, 000 10, 000 70, 000 10 5 × 2
CIFAR-100 (Fine) 32 × 32 × 3 50, 000 10, 000 60, 000 100 5 × 20

CIFAR-100 (Coarse) 32 × 32 × 3 50, 000 10, 000 60, 000 20 5 × 4
USPS 16 × 16 × 1 7, 281 2, 007 9, 298 10 5 × 2

Table 3: Datasets

Hyperparameter Value

ρ 0.6
βs 1.0
βd 0.1

η 1 × 10−3

α 1 × 10−7

FuzzyARTMAP F1 Dimension m

Table 4: Hyperparameters

Layer Size Transfer Function

CC |x0| Complement Code
Dense 512 sigmoid

Normalize - LayerNormalize
CC - Complement Code

Dense 256 sigmoid
Normalize - LayerNormalize

CC - Complement Code
Dense 784 sigmoid

Table 5: Dense network

Layer Size Transfer Function

Conv2D 3 × 3 × 2 × 8 Sigmoid
MaxPool 2 × 2 -
Normalize - LayerNormalize

CC - Complement Code
Conv2D 5 × 5 × 2 × 16 Sigmoid
MaxPool 4 × 4 -
Flatten - -

Normalize - LayerNormalize
CC - Complement Code

Dense 784 Sigmoid

Table 6: Convolutional network
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Filter Visualization

ST vs. MT

• ST: Single task

◦ Train/test

• MT: Multi task

◦ L2 condensed scenario
◦ Train T1, test T1

◦ Train T2, test T1, T2,
◦ Train T3, test T1, T2,

T3

◦ . . .

Petrenko DeepART 46 / 57
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Performances

Method
Dataset

MNIST Fashion MNIST USPS CIFAR-10

FuzzyARTMAP (ST) 0.7239± 0.0401 0.6109± 0.0214 0.7010± 0.0421 0.1891± 0.0131
FuzzyARTMAP (MT) 0.6886± 0.0443 0.5751± 0.0379 0.6648± 0.0288 0.1767± 0.0155

MLP DeepART (ST) 0.7027± 0.1231 0.6434± 0.0604 0.8292± 0.0213 0.2196± 0.0120
MLP DeepART (MT) 0.5650± 0.2667 0.5399± 0.1643 0.8244± 0.0340 0.2138± 0.0136

CNN DeepART (ST) 0.7529± 0.0592 0.6616± 0.0282 0.8545± 0.0132 0.2192± 0.0363
CNN DeepART (MT) 0.7309± 0.0930 0.6082± 0.1219 0.8405± 0.0536 0.2066± 0.0247
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Category Analysis

Method
Dataset

MNIST Fashion MNIST USPS CIFAR-10

FuzzyARTMAP (ST) 841.4± 746.9 2474.7± 2308.5 755.4± 410.3 1575.5± 512.7
FuzzyARTMAP (MT) 972.8± 904.9 2724.7± 2611.7 829.4± 472.5 884.3± 278.7

MLP DeepART (ST) 118.8± 75.1 187.8± 125.3 45.8± 10.1 1613.7± 1309.7
MLP DeepART (MT) 27.0± 4.7 35.6± 12.7 23.4± 4.6 254.0± 195.1

CNN DeepART (ST) 106.4± 56.6 224.3± 163.9 59.2± 19.6 2182.4± 1958.7
CNN DeepART (MT) 38.8± 14.0 48.5± 22.3 30.8± 7.5 248.4± 168.8
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Condensed Scenario

Figure 15: An example condensed lifelong learning scenario for illustration using the deep MLP
DeepART algorithm trained on the 2-class 5-task Split MNIST handwritten digits dataset variant.

Petrenko DeepART 49 / 57
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L2Metrics

Lifelong Learning Metrics
• l2logger

• l2metrics

• Metrics: Performance,
Activation, Match

• Metametrics: Performance
Maintenance, Forward Transfer
Ratio, Backward Transfer Ratio

Petrenko DeepART 50 / 57
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Conclusion

Summary

1. First deep, function-composed
adaptive resonance algorithm

2. MLP and CNN layer derivations,
arbitrary network architecture

3. Performance improvement over
FuzzyARTMAP with same head
dimensionality

4. Significant category proliferation
reduction at head layer over
FuzzyARTMAP

xi [x,
−→
1 − x]

CC

∥x ∧Wi∥1

M(x,w)

J = argmax(M)
wJ ← β(x ∧wJ)− (1− β)wJ

WTA

M ∼ N (0, 1)

LayerNorm

ϕ(z) = 1
1+e−z

ϕ

xi+1
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Conclusion

What Was Learned

• L2 and learning stable feature detectors
on nonstationary data are the same
problem

• ART viable for alternative architectures
altogether i.e.:

◦ DeepART and deep neural networks
◦ stART and graphs
◦ NLP via structured syntactic parsing
◦ Deep transfer learning via deep feature

clustering

Future Work

1. Expand capabilities and applications of
ART

2. Lateral thinking to succeed in modern
ML landscape

◦ Cannot compete with big industry and
tech on existing ML methods;
outpaced, outscaled, outbudgeted

◦ Succeed by tackling new problems,
rejecting trends
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Thank You!

Contributions
1. Combining Deep Learning and Adaptive

Resonance Theory

2. Adaptive Resonance Algorithms for Lifelong
Machine Learning

3. Novel Adaptive Resonance Algorithms and
Architectures

Papers
• stART: Analyzing Biomedical Datasets with Symbolic

Tree Adaptive Resonance Theory, Accepted MDPI
Information[7]

• Deep Context Recognition: Context Recognition
with Deep Feature Clustering, Under Review IEEE
SMC Transactions[8]

• DeepART: Deep Gradient-Free Local Learning with
Adaptive Resonance, Accepted Neural Networks

xi [x,
−→
1 − x]

CC

∥x ∧Wi∥1

M(x,w)

J = argmax(M)
wJ ← β(x ∧wJ)− (1− β)wJ

WTA

M ∼ N (0, 1)

LayerNorm

ϕ(z) = 1
1+e−z

ϕ

xi+1

Knowledge-Based
Learner

Task-Based
Knowledge Miner Model Application

Knowledge Base
(KB)

T1, T2, . . . , TN , TN+1, . . .

Task Manager

Future Learning TasksPreviously Learned Tasks

DN+1

Past
Knowledge

Retained
Knowledge

Knowledge
in Results

Discovered
New Tasks

New
Task
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