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Catastrophic Forgetting and L2

(2 N Catastrophic Forgetting
is f*(¢(x))

e Brute force insufficient Shared basis f*(¢
o Real world is nonstationary, real Nonstationary data
engineered systems New classes
o Energy cost. _ o Shift in previous classes
o Transferrability and democratization - . .
: ) Stability-plasticity dilemma
e New model considerations : .
Stable enough to retain previous
o Add new classes? knowledge
ize? :
o Regulgrlze. ' Plastic enough to learn new
o Learning scenarios? knowledge
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McCulloch-Pitts Neuron

e Want to become pattern/feature -
detector /filter

..but which pattern? o

2
. . S~
o Random starting weights? w2

— z ¢

by (¢ )—> v
o Uniqueness with respect to neighbors? _
o What if it is a moving target?

: wr,
e ...and how?

x
1. Someone tells me how to change ‘
2. | figure it out myself
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Multiple Neurons

e Deep Learning: Patterns of filters are
useful as inputs for other filters

e We don't want to converge on the
same filter pattern
1. Prescribed Order: Weight assigning
“oracle” knows each role
2. Natural Order: Competition,
“might-makes-right”, “who gets to
learn, and how much”?

e Interference and stability
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Adaptive Resonance

Optimal Assignment

e Stability-plasticity dilemma addressed ‘x]
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competitive learning dynamics [1]

e Steady-state analysis of recurrent TR R
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Theory
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Article
Analyzing Biomedical Datasets with Symbolic Tree Adaptive
Resonance Theory

Sasha Petrenko *®, Daniel B. Hier 2%, Mary A. Bone 3, Tayo Obafemi-Ajayi 9, Erik ). Timpson 50,
William E. Marsh 5, Michael Speight 5© and Donald C. Wunsch 11 1

omputer Engineering, Miss

Department of Electrical an University of Science and Technology,
ISA

s Ci
(WEM)

* Comespondence: petrenkos@mst edu

Abstract: Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes
and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and
altered proteins to changes in molecular functions and biological processes. It is desirable to gain new
insights from these data,

ally with regard to the uncovering of hierarchical structures relating
;, amalysis to this end has proven difficult duc to the complexity of the

discase variants. Howe
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Figure 1: stART Biomedical Dataset: 81
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()

(attribute) == (num) | (gene_location) | (disease) | (discase_MIM) | (gene) | (gene_MIM)
| (inheritance)+ | (protein) | (uniprot) | (chromosome) | (chromosome_location) |
(protein_class)+ | (biologic_process)+ | (molecular_function)+ | (disease_involvement)+
I (MW) | (domain)+ | (motif)+ | (protein_location)+ | (length) | (disease_MIM2) |
(phenotype)+ | (weight_tag) | (length_tag) ;

(attribute)+

(phenotype) ::= ‘ataxia’ | ‘atrophy’ | ‘auditory’ | ‘automomic’ | ‘behavior’ |
‘cognitive’ | ‘cranial nerve’ | ‘deformity’ | ‘dystonia’ | ‘gait’ | ‘hyperkinesia’

| “hyperreflexia’ | ‘hypertonia’ | ‘hypertrophy’ | ‘hyporeflexia’ | ‘hypotonia’ |

‘miscle’ | ‘pain’ | ‘seizure’ | ‘sensory’ | ‘sleep’ | ‘speech’ | ‘tremor’ | ‘visual’ |

‘weakness’ ;
(bmlugu: _process) := ‘Apoptosis’ | ‘Mitosis’ | ‘Lipid_metabolism’ | ‘Symport’
‘Ubl_conjugation_pathway’ | ‘Glycolysis’ | ‘Glucose metabolism’

I ‘Ton_transport’ |  ‘Unfolded_protein_response’ | ‘Cell_division’
| ‘DNA_repair’ | ‘Cell_adhesion’ | ‘Notch_signaling pathway’ |
‘Protein_biosynthesis’ | ‘Stress_response’ | ‘Endocytosis’ | ‘Transcription’
| ‘Sodium_potassium_transport” I “Transcription_regulation’ I
‘Fatty_acid_metabolism’ | ‘Host_virus_interaction’ | ‘Antiviral defense’
| ‘Lipid_degradation’ | ‘Autophagy’ | ‘Sodium_transport’ | ‘Immunity’ | ‘none’
| ‘Protein_transport’ | ‘Nucleotide_b: is’ | ‘Calcium_tramsport’
| ‘Tramsport’ | ‘Phagocytosis’ | ‘Inflammatory response’ | ‘DNA_damage
| ‘Potassium_transport’ | ‘Carbohydrate metabolism’ | ‘Cell_cycle’ |
‘Innate_immunity’;

Figure 2: stART EBNF grammar production
rules example

DeepART
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(b) Relation parse tree of x +m - . () START prototype after update.

(a) START prototype before update.

Figure 4: stART Statements and Prototypes for

(a) START relation parse tree TreeNode. (b) Gram-ART syntax tree TreeNode.

Figure 3: stART Relation Parse Syntax Trees ; _
for z +y pretrained x + y prototype updated with
. r+m-n
DeepART
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stART

A I gor 1t h ms ‘Algorithm 1: START algorithm. A set of symbolic statements under a formal

context-free grammar are parsed into their syntax trees. Prototypes are defined as

learning dynamics otherwise follow the activation, competition, match, update,
d

e stART: Symbolic Tree Adaptive oration here el Fllo o cemenary ART sigorithe, ouined (1]

Inference during classification follows the same match rule dynamics without
R T h the instantiation of new categories; in the case of complete mismatch, either
€sonance €0 ry an “unknown" label or the best matching unit (the category that maximizes the
match criterion) may be returned. Please see Table 1 for full notation
H H . Data: Symbolic statements S; CFG grammar G with terminal symbols T,
[ ] S IX variants: non-terminal symbols N, pmdgucuon rules P, and smmmczn entry symbol S.
Result: Cluster labels Y € N

® StART, DUa |-V|g||a nce StART, /+ Parse statements into constituency parse trees %

1 X ¢ Parsex(S,G)

. . . /* Iteration over parsed statement trees */
Distrubuted Dual-Vigilance stART s x e xdo

/* Compute activations for all nodes */
2 e 2 2 s | TefrR) viee
o Supervised modification (Lifelong AR N "
. 4 | ]+ argmax (T;)
Context Recognition)
) /* Compute match for the winning category */
| Ty
/% Vigilance test %
6 | ifM>pthen
/% Update category */
’ Ry fu(xRy)
] else
/# Deactivate category o
5 A A—{J}
0 if A £ @ then
/* Continue match search */
1 Goto Line 4
2 else
/% Create and initialize new category */
s Ke el +1 P
M Ry  fy(x,G) v

etrenko DeepART
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stART

protein length

protein motif
chromosome
protein domain

molecular function

autosom recessive

autosom dominant

cytoplasm
“‘ = Cluster 8
plasma membrane m—Cluster 5
m—Cluster 2
0 frEsTE———————Te -- hypertonia = Cluster 6
01 05 e 07 08 09 10 m—Cluster 9
wior [ = uter?
m—Cluster 1
Figure 3. Effect of vigilance parameter p on number of clusters. A Monte Carlo of shuffled sample cognitive [ = Cluster 4
presentation order was run to generate 1o intervals of the results at each vigilance parameter value. - Cluster 3
As p was increased from 0.0 to 1.0, the maximum cluster size decreased, the number of clusters 0 i 2 ! ”-" 6 8 dei 10 12 "
. . . . mean(|SHAP valuel) (average impact on model output magnitude)
increased, and the number of singleton clusters increased. A value of p = 0.6 (yellow dashed line)
was selected to yield 9 clusters with only two singleton clusters. Larger p values gave too many Figure 12. SHAP cluster summary plot for the 9 clusters derived from CMT dataset with p = 0.6,
singleton clusters, and smaller ones put too many cases into one cluster. The SHAP plot shows which features contributed the most to the  cluster configuration by cluster.
Important features are protein length, ‘mode of i dominant and
recessive), protein location (cytoplasm and plasma membrane), and certain phenotypes (auditory,
F |gu re 6 st A RT P arameter SWee p cogpitive, and hypertonia). The domain expert rated these features as highly biologically plausible.
SHAP plots were created using the method of Lundberg et al. [68]

Figure 7: stART SHAP Analysis Aen
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Lifelong Context Recognition:

1. Lifelong Context Recognition via Deep
Feature Clustering

2. Components
(a) ARTSCENE [2]

(b) YOLOV10 [3]

(c) DDVFA [4]

(d) Simplified FuzzyARTMAP [5]
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Lifelong Context Recognition via Online Deep Feature Clustering

Petrenko®* (Researcher), Andrew Braa”** ( ), Mario Aguilar-Simon® ( ) and
1 C. Wunsch I (Researcher)

“Missouri University of Science and Technology, 1201 N State St, Ralla, 65401, M, USA

*feledyme Scieniific, 5001 S Miami iva, Durham, 27703, NC, USA

ARTICLE INFO ABSTRACT

Keywords: ‘Comes recognion fe mmm umm (L2) agents is an open-ended problem wherehy ageregate

Adapive resonance theory

‘.mu, 1o recognize conteat is nocessary in L2

which the agent is operating. The
agents to engage modulatory signals (o account for

e input state space associated with 3

online clusering

hifting

relevant features. C
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while prescribing .
ing of

pupe

vision cawironment, The srer

1 of this lgorit L i 6 exiil
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online incremenal

1. Introduction

Context recognition is an open-ended problem that con-
cerns attentional and adaptation mechanisms for lifelong
Iearning (1.2) agents, Within an embodicd lifclong Iearning
agen
patierns
that should influence task exceution. This would prompt
appropriate siluational changes in the agent’s operation, such
a5 shifting atention o contextrelevant feaures or switching

Such

realistic p P

emonstratng contnualleamin ints own right.

Lifelong learning algorithms and the agents that utilize
them are fasked with learning on an indeerminate number
of tasks in a sequential manner Kudithipudi, Ay

Babb, Bazhenov, B C

Cheney, Clune, Daram, Fusi, Helfer, Kay, Ketz, Kira, Kolouri,
KrMulut Kriegman, Levin, Madireddy, Manicka, Marj:
ghton, Miikkulainen, Navratilo
Soltoggs

kiston, Bongard, Br

guas-Gil, pinge,

is
ssary in lifelong leaming agents 1o allow them
10 adapt 1o an ever-expanding set of environments or lasks,
“This work demonstrates an algori d to perform
online, multi on for an L2 agent with
context-specific tasking on a visual-wavelength computer
vision problem.

DeepART

this more intelligent methods of
¢ accumulated knowledge. Towards
“hen and Liu (2018) describe several
which summarize
continually learns on the job,
ith existing knowledge and
all while being self-guided
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both storing and utilizi
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ARTSCENE: Filters

Ol:g = Z z]k:

1. Color-to-gray image transformation ( J)em

2. Contrast normalization o _ Z

3. Contrast-sensitive oriented filtering (p Jen

4. Contrast-insensitive oriented filtering

5. Oriented competition at the same G — ( Oy’ cr
position 23:1 029’ ZUE{R,GB} cm

6. Gist feature vector ke {1,2,3,4};

7. Attentional shrouds w e {R,G, B};

y

7r6{1,...,16})
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Method

Experimental Method

Multi-modal deep feature clustering approach
AirSim: Custom environment, assets, simulate multiple
flight paths
Extract full mid-layer activations with pretrained
YOLOv10

Multi-object classifier

Deep CNN

Compute average activations along pixel dimensions

(c) EMA Morning (d) EMA Dusk
Z-score feature statistics on training dataset
Normalize, sigmoid, DDVFA clustering

Modulated, label-mapped Simplified FuzzyARTMAP
module for supervised

(e) PR Morning (f) PR Dusk
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Method

Experiments

1. Randomized Sampling: full shuffle, train/test

2. Lifelong Learning Condensed Scenario Permutations:
(a) Train T1, test T1, train T2, test T1 and T2, train T3, etc.
(b) Permute (6! = 720)

3. Semi-Supervised Training: Train 80% supervised, train 20% unsupervised

Petrenko DeepART 28 / 57
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Results: Monte Carlo
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Figure 11: Shuffled Samples Figure 12: Permuted Contexts Figure 13: Semi-Supervised
Performance Performance Performance
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Results: Single L2 Condensed Scenario

100% o ©° o o
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g o .8 DOTD
g s DOTM
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25%
0% G- | 1. ceeeee]ee PR R e S| . .. .. ceeee]es ... SRRt LR T DR eeens e ‘
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Figure 14: A single lifelong learning scenario of alternating training and testing blocks. Gray areas are
Experience Blocks (EBs), where performance is tested for each class. White areas denote Learning Blocks (LBs).
Solid curves during learning blocks indicate learning validation results during training. Dotted lines interpolated
between EBs indicate the global trends of performance per class as new classes are sequentially introduced Aen
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DeepART

e Deep Adaptive Resonance

e Combining deep learning and ART

e Challenges:

o Deep learning is model of
architectures, not necessarily learning g “_,“:,.f:‘,”h’"“
rules (i.e. gradient descent with
backpropagation, loss penalties such

as EWC)
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DeepART: Deep Gradient-Free Local Learning with
Adaptive Resonance

o Deep Hebbian literature D
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network are i

providing Tentures
learing, Morenve, local v
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Sasha Petrenko

gorithms. In the presented model, I
interpreted as modifie

complement coded fnputs and soft winner-take-ll larning that
y updated with a Fuzzy

atcgory-label mapping (o enable superviscd

ecture.

ation learning of deep neural networl
learning properties of ART algorithms. This pap
primer on how to exchange deeper networks for other ART

while still retaining the properties of ART throughout

11, Fellow,

Abstra article nrmm DeepART, a new, gradient-
free technique Tor the tra

of deep Hebbian neural net-
ks sing the dynamics of Adapive Resonance Theory (ART)
of

el,

decp neural
modules with

‘module

update rules are derived for

Indes Terms—Adapive esonance theory, deep Hebbian larn-
ing, lifelong machine learning, task: ning

INTRODUCTION

¢pART provides a
on o catgory prolfera:

lll‘dung

e it combines the nonlinear feature
with the lifelong
er is thus &

2P neural networks trained with backpropagation have

achieved wonders in the realm of parametric model

useful

of

@, [51 |o| demonstrating the power

y. design for difficult computer vision and natural language pro-
cessing tasks (11, 121, (3],

models.

Nonetheless, mckpmpagmon is a nagﬂc design decision for
the training of deep neural network architectures, suffering

from three broad categorics of flaws: sample efficiency (decp
models require very many iterations on very large dataset

DeepART

. Member, IEEE, Lconardo Enzo Brito da Silva, Member, IEEE, and Donald C. Wunsch

IEEE

the size of the networks, increasing the power and compute
costs of training deep models on such large datasets, an
ultimately probing pretrained models a posteriori to decipher
their black-box reasoning.

‘This motivates research into alternative leaming rules for the
training of deep networks with biologically-plausible methods
using the ciples that biology has d ed
to solve relevant problems such as the  stabilty-plast
dilemmay; such techniques include the use of local Hebbian
rules (9], [10], [L1]. [12]. [13]. competitive local learning
rules [14), [15), and even hybrid learning rules [16), [17],
[18]. Adaptive Resonance Theory (ART) algorithms are a class
of prototype-based biologically-inspired [19] neural networks
designed to optimally address the stability-plasticity dilemma
in unsupervised scenarios [20], (211, but they suffer from their
own memory complexity due to the potenial for catcgory pro-

igned for deep hierarchical models.

This article demonstrates a novel local weight update
methodology, named DeepART, that combines the hierarchical
feature representation learning of deep networks with the
lifelong learning capabilities of ART algorithms for the incre-
mental multimodal learning of both fully-connected multilayer
perceptrons (MLP) and convolutional deep neural networks
(CNN). This method addresses the memory scalability of
ART-based systems by mitigating their category proliferation
when handling complex high dimensional data in lifelong
leaming scenarios while also circumventing the scalability
issues of gradient-based neural network optimization by using
incremental local weight update rules. This method is derived
in the space of deep Hebbian Icarning, and the method is
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Problem Statement

Problems Objectives

Catastrophic forgetting Manifold learning from deep architectures

Stability-plasticity dilemma Uil s e

Deep loss landscape fragility Performance maintenance

Non-local learning with gradients Forward transfer

. . . Backward transfer
ART optimal category learning, assuming BBl RISt

a stable, complete feature space Combine ART with feature learning

Deep Hebbian Learning Adaptive Resonance Theor

e No gradients e Prototype-based

e Local learning e WTA learning

o Aw = f(x,w,y) e Neurogenesis

e Incremental learning e Incremental learning
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Problem Statement

Distillation
Multi-layer, function-composed ART algorithm

MLP and CNN derivations
Supervised modification

Stability /convergence criterion
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Learning Rules
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Conclusion Conclusion
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Backpropagation

oe
Awij = _775Wij
e=L(ty)

e Pros:
1. Statistical /optimization guarantees
e Cons:

1. Unexplainable
2. Data/energy inefficient

Petrenko

DeepART

Awij = f(y;,Xi5, Wij)

Explainable

1. Pros:
(@)
2. Cons:

o Weight instability

o Limited research with deep networksj
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Local Learning Rules

Yij = WijX;

25 = ¢ (WijX;)

Rule Aw

Unsupervised

Hebb's nyx

e i: layer index, n layers Oja’s n-y(x—yw)

. : Instar n-y((x—w)
e j: neuron index, m neurons
e y;j: neuron output Supervised
e {;;: neuron target Widrow-Hoff 7 (t —y)x
* wij: weight vector Table 1: Local neuron update rules. Shorthand:
e X;: input vector Y=Yij X=X5, W= W,
e ¢: (nonlinear) transfer function

v

Acn

Petrenko DeepART 37 /57



Overview L2 ART START DFCCA DeepART Background Derivation Experiments Conclusion Conclusion
[e]e]e} 0000 OO000O0 OOO0O0O OOOOO0OO00O0 0000 [e]e]e] [e]e]e]e]e] 0000000 [e]e) 00000

Local Learning Rules

What about 7? B

Rule . .
e Varying 7 learning rules j=J 3#J
e = 3 in ART literature WTA 1 0
e DeepART revelation: SOM 1 hj
1. Each category gets a different feature Softmax o (y) o(y)
vector X Contrast 1 —0 (y)
2. Each category shares the same feature
vector x but compete at the level of 3 Table 2: Local neuron learning rate rules.
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Learning Rule Derivation

Derivation (FuzzyART

/\ o
Hebb Aw = nyx (1) | Activation T; = % (6)
T 7
Layer AW = nyx (2) et o Iyl [lx Awsls .
Decay Aw = nyz — v (3) atc T L T X ")
Decay Ratio ¥ = nyw (4) | Update wy (1=B)wy+BxAw) (8)
Instar Aw =ny (z —w) (5) Delta Rule Aw;=p((xAwy)—wy) (9)
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Modifications

Forward x; = CC(y;-1) (10)
= CC (¢ (Zi ([xi—1 A Wijll)))

(11)

Sigmoid o(z) = 1—|—1e—2 (12)

Update Aw; g =By ((xi Awyg) —wiz) (13)

Learn Rate Bi,g = Ba/mi (14)

=CC(¢p(Z; (W;_1%%,-1)))
(15)

Convolution

Petrenko DeepART

DeepART Background Derivation Experiments
0000000 [e]e)

Conclusion
00000

Conclusion

Supervised Component

Option 1: FuzzyARTMAP

Feature - category -

label map

Option 2: Leader Neuron

711 ifyr; =w

7 1() ifyr; #w

Target: 1, (J

(16)
Widrow-Hoff: Aw = n (t — y) x
(17)

)
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Algorithm

DeepART

e Deep, nonlinear function-composed hierarchical model

e Alternating normalization (FO), complement-coding (F1), and competition layers (F2)

Local weight update rule, no gradients

Default unsupervised, FuzzyARTMAP head supervised
Feedforward MLP and CNN variations

WTA

J = argmax(M)
wy e BxAws) — (1= B)wy

Xi [X7

—x] llx A Will1 M ~ N(0,1) ——| ¢(2) = 2= ——> Xi+1

ccC /M(x, w) LayerNorm o
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Stability

Convergence Criterion

e Cohen-Grossberg theorem for shunting My = ] (19)
network component I A ;V1J||1
e ART1, FuzzyART: winning activation = # (20)
monotonically increases ’
Y Aw; g = Big (i Awig) —wig) (21)

e Hypothesis: IM.
o Monotonic decrease in M, ; effect 2T <0 (22)
nullified by normalization dAw; g
o Filter specialization and stability
driven by convergence to fuzzy

subset of initial weights
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Experimental Setup

Dataset ‘ Feature Dimension ‘ # Train ‘ # Test ‘ # Total ‘ # Classes ‘ # Tasks X # Classes per Task
MNIST 28 x 28 x 1 60, 000 10, 000 70, 000 10 5x 2
Fashion MNIST 28 x 28 x 1 60, 000 10,000 70, 000 10 5Xx 2
CIFAR-10 32 x32x3 50, 000 10, 000 70, 000 10 5x 2
CIFAR-100 (Fine) 32 x32x3 50, 000 10, 000 60, 000 100 5 x 20
CIFAR-100 (Coarse) 32 x32x3 50, 000 10, 000 60, 000 20 5x 4
USPS 16 X 16 x 1 7,281 2,007 9,298 10 5X2

Table 3: Datasets

Layer | Size | Transfer Function Layer | Size | Transfer Function
Hyperparameter Value
cC |x0] Complement Code Conv2D 3x3x2x8 Sigmoid
P 0.6 Dense 512 sigmoid MaxPool 2x2 -
Bs 1.0 Normalize - LayerNormalize Normalize - LayerNormalize
Ba 0.1 CcC - Complement Code CcC - Complement Code
n 1x 103 Dense 256 sigmoid Conv2D 5X5xX2x16 Sigmoid
o 1x10°7 Normalize - LayerNormalize MaxPool 4 x4 -
FuzzyARTMAP F1 Dimension m cC - Complement Code Flatten - -
Dense 784 sigmoid Normalize - LayerNormalize
Ccc - Complement Code
Table 4: Hyperparameters Dense 784 Sigmoid

Table 5: Dense network

Table 6: Convolutional network

Petrenko DeepART



Overview L2 ART START DFCCA DeepART Background Derivation Experiments Conclusion Conclusion
[e]e]e} 0000 OO000O0 OOO0O0O OOOOO0OO00O0 0000 [e]e]e]e] [e]e]e]e]e] [e]e] leJe]ele] [e]e) 00000

Filter Visualization

ST vs. MT
ST: Single task
Train/test
MT: Multi task

L2 condensed scenario

Train 17}, test T3
Train 15, test 17, 15,
Train 153, test 17, 15,

T;5

3
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Performances

Method

Dataset

MNIST

Fashion MNIST

USPS

CIFAR-10

FuzzyARTMAP (ST)
FuzzyARTMAP (MT)

0.7239 £ 0.0401
0.6886 £ 0.0443

0.6109 £ 0.0214
0.5751 £ 0.0379

0.7010 £ 0.0421
0.6648 £ 0.0288

0.1891 +£0.0131
0.1767 £ 0.0155

MLP DeepART (ST)
MLP DeepART (MT)

0.7027 £ 0.1231
0.5650 £ 0.2667

0.6434 + 0.0604
0.5399 £ 0.1643

0.8292 + 0.0213
0.8244 £ 0.0340

0.2196 + 0.0120
0.2138 £ 0.0136

CNN DeepART (ST)
CNN DeepART (MT)

0.7309 £ 0.0930

0.6082 £ 0.1219

0.7529 + 0.0592 0.6616 £ 0.0282 0.8545 1+ 0.0132

0.8405 £ 0.0536

0.2192 + 0.0363
0.2066 + 0.0247

Petrenko

DeepART
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Category Analysis

Dataset
Method MNIST Fashion MNIST USPS CIFAR-10

FuzzyARTMAP (ST) 841.4+4746.9 2474.742308.5 755.4+410.3 1575.5+512.7
FuzzyARTMAP (MT) 972.8 £904.9 2724.7 £2611.7 829.4+472.5 884.3+278.7

187.8 +£125.3 45.8+£10.1  1613.7+1309.7
254.0£195.1

MLP DeepART (ST)  118.8 +75.1
MLP DeepART (MT) 27.0+4.7  35.6+12.7  23.4+4.6

59.2+19.6  2182.4 4+ 1958.7
248.4 1+ 168.8

CNN DeepART (ST)  106.4+56.6  224.3 +163.9
CNN DeepART (MT)  38.8+14.0 48.54+22.3 30.8 + 7.5

Acn
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Condensed Scenario

100% °

=t 4 |/ & | /1S | T
-
2
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g 3-4
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%o 7-8
£ —_— 910
g

25% |
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12 34 5.6 78 9-10

Figure 15: An example condensed lifelong learning scenario for illustration using the deep MLP
DeepART algorithm trained on the 2-class 5-task Split MNIST handwritten digits dataset variant.
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L2Metrics

Lifelong Learning Metrics

12 Metric Method MNIST Fashion MNIST USPS CIFAR-10 CIFAR-100 (Coarse)  CIFAR-100 (Fine)
e 12logger rtomane
e 12metrics CNN DRopART D070 £ 0291 00010+ 0.0 09031 £00015 0001 100395 ooer Do io
° MetI’ICS Performance CNN DecpART 09703+ 0.0291 09616+ 0.0159  0.9931 +0.0015 096114+0.0203 09258 £0.0607  0.9475 +0.0359
: g
ctivation, atc NN DpAKT 00001 £ 00018 09784000 O0oNS 00N 09SH £00ITS  0S0al £0usas  09tus & 00ITS

Activation

° Metamet"csl Performance . FumAKU LSSEOIZG LU OID 000 £00IST Q0 OUITI LTI £O0S0  Loo 001

MLP DecpART 10150 +0.0315 10064400141 1.0021 +0.0012  1.0058£00020  1.0095+0.0049
CNN DecpART 1002+ 0.0016  LO1I3£0.0223  LOI00+0.0181  10013£0.0006  1.0074£0.0056  1.0094+0.0078

Maintenance, Forward Transfer

s Eoois oo Toom  Lumisouse  1oont oo
atio, backward lransrer Ratio FuraAKT L0001 00001 LOWI 00 L0001 L0001 1000100003 10001 £ 00002 10002 00001
W BIR  MLP DeepART 09971 +0.0018 0.9977£0.0012 0997340.0016 0.9991+0.0006  0.9953+0.0016  0.9891 +0.0035
N b SomrLoome oo : :
v

et PumART - OMSAL0T OOTIOLO0SS LOGZEOMGS LOSWIONSS  0SELOMGS  007000mA
o wrBou bweibim dmeotbo Lboiions lociionn ousiiowa Do ouns

— SRR DELoe Somioha 1oh e ;

i

e FumART 097402470 0OTIOL00683 10602+ 00990 7400788 09360 +£0.1063 09793 +0.0224

FTR  MLP DeepART  0.9620+0.0280  0.9560 + 0.0427
NN DopART 09794 £ 0017 09165+ 0.1051 1015

LOISG£0.1331 09721400660 09514 +0.0756
T00%1 TOeLOTRY  Oonssio0ma  Looss 00w

: FursyART 09995400020 09972100093 09957400040 09996100007 10000 £0.0010  0.9999 +0.0001
BIR  MLPDepART 0015100271 09711500165 09749500066 0.9338£0.0303 0901800381  0.9478 +0.0361
1 CNN DecpART 09647500245 0.9551£0.0291  0.9935500040 0.9100£0.0290 08621500471 0.04720.0484

TABLE VII: The Performance Maintenance (PM), Forward lmmﬁ,r Ratio (FTR), and Backward Transfer Ratio (BTR) L2
meta-metrics c Fuzzy ARTMAP best chi (BMU) activation,
and Tuzzy ARTMAP BMU match for cach method and dataset tested. The BMU during inference s the winning catcgory that
is reported during the FuzzyART WTA classification whether by its normal match rule or as the highe: ated category in ACh
the case of a mismatch wherebv no one catesorv satisfies the current vigilance criterion. The subseauent activation and match

DeepART
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Conclusion

1. First deep, function-composed WTA :
adaptive resonance algorithm W, H&t:fng:n;i(?f)f Bw.s
2. MLP and CNN layer derivations, ]
arbitrary network architecture X = e T —x] [ A Wil M~ N (0,1) = 6(2) = s |— X1
3. Performance improvement over c M) LayerNorm ¢
FuzzyARTMAP with same head
dimensionality , ol A
4. Significant category proliferation o l
reduction at head layer over =3
FuzzyARTMAP i —
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Conclusion

What Was Learned

e L2 and learning stable feature detectors
on nonstationary data are the same
problem

e ART viable for alternative architectures
altogether i.e.:

o DeepART and deep neural networks

o stART and graphs

o NLP via structured syntactic parsing

o Deep transfer learning via deep feature
clustering

DeepART Background Derivation Experiments Conclusion Conclusion

0000000 (o] [e] le]e]e}

1. Expand capabilities and applications of
ART

2. Lateral thinking to succeed in modern
ML landscape

o Cannot compete with big industry and
tech on existing ML methods;
outpaced, outscaled, outbudgeted

o Succeed by tackling new problems,
rejecting trends

Petrenko DeepART
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Thank You!

Contributions
Combining Deep Learning and Adaptive e stART: Analyzing Biomedical Datasets with Symbolic
Resonance Theory Tree Adaptive Resonance Theory, Accepted MDPI
Information|[7]

Adaptive Resonance Algorithms for Lifelong
Machine Learning e Deep Context Recognition: Context Recognition
with Deep Feature Clustering, Under Review |[EEE
SMC Transactions|8]

e DeepART: Deep Gradient-Free Local Learning with
Adaptive Resonance, Accepted Neural Networks

Novel Adaptive Resonance Algorithms and
Architectures
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